Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0292494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37819927

RESUMEN

PURPOSE: This study aimed to assess the usability of a virtual reality-assisted sensorimotor activation (VRSMA) apparatus for individual digit rehabilitation. The study had two main objectives: Firstly, to collect preliminary data on the expectations and preferences of patients with carpal tunnel syndrome (CTS) regarding virtual reality (VR) and an apparatus-assisted therapy for their affected digits. Secondly, to evaluate the usability of the VRSMA apparatus that was developed. METHODS: The VRSMA system consists of an apparatus that provides sensory and motor stimulation via a vibratory motor and pressure sensor attached to a button, and a virtual reality-based visual cue provided by texts overlaid on top of a 3D model of a hand. The study involved 10 CTS patients who completed five blocks of VRSMA with their affected hand, with each block corresponding to the five digits. The patients were asked to complete a user expectations questionnaire before experiencing the VRSMA, and a user evaluation questionnaire after completing the VRSMA. Expectations for VRSMA were obtained from the questionnaire results using a House of Quality (HoQ) analysis. RESULTS: In the survey for expectations, participants rated certain attributes as important for a rehabilitation device for CTS, with mean ratings above 4 for attributes such as ease of use, ease of understanding, motivation, and improvement of hand function based on clinical evidence. The level of immersion and an interesting rehabilitation regime received lower ratings, with mean ratings above 3.5. The survey evaluating VRSMA showed that the current prototype was overall satisfactory with a mean rating of 3.9 out of 5. Based on the HoQ matrix, the highest priority for development of the VRSMA was to enhance device comfort and usage time. This was followed by the need to perform more clinical studies to provide evidence of the efficacy of the VRSMA. Other technical characteristics, such as VRSMA content and device reliability, had lower priority scores. CONCLUSION: The current study presents a potential for an individual digit sensorimotor rehabilitation device that is well-liked by CTS patients.


Asunto(s)
Síndrome del Túnel Carpiano , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Estudios de Factibilidad , Mano
2.
Front Neurosci ; 17: 1201865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383098

RESUMEN

Introduction: In the past, various techniques have been used to improve motor imagery (MI), such as immersive virtual-reality (VR) and kinesthetic rehearsal. While electroencephalography (EEG) has been used to study the differences in brain activity between VR-based action observation and kinesthetic motor imagery (KMI), there has been no investigation into their combined effect. Prior research has demonstrated that VR-based action observation can enhance MI by providing both visual information and embodiment, which is the perception of oneself as part of the observed entity. Additionally, KMI has been found to produce similar brain activity to physically performing a task. Therefore, we hypothesized that utilizing VR to offer an immersive visual scenario for action observation while participants performed kinesthetic motor imagery would significantly improve cortical activity related to MI. Methods: In this study, 15 participants (9 male, 6 female) performed kinesthetic motor imagery of three hand tasks (drinking, wrist flexion-extension, and grabbing) both with and without VR-based action observation. Results: Our results indicate that combining VR-based action observation with KMI enhances brain rhythmic patterns and provides better task differentiation compared to KMI without action observation. Discussion: These findings suggest that using VR-based action observation alongside kinesthetic motor imagery can improve motor imagery performance.

3.
Brain Sci ; 13(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190621

RESUMEN

Objective: The purpose of this study was to investigate the cortical activity and digit classification performance during tactile imagery (TI) of a vibratory stimulus at the index, middle, and thumb digits within the left hand in healthy individuals. Furthermore, the cortical activities and classification performance of the compound TI were compared with similar compound motor imagery (MI) with the same digits as TI in the same subjects. Methods: Twelve healthy right-handed adults with no history of upper limb injury, musculoskeletal condition, or neurological disorder participated in the study. The study evaluated the event-related desynchronization (ERD) response and brain-computer interface (BCI) classification performance on discriminating between the digits in the left-hand during the imagery of vibrotactile stimuli to either the index, middle, or thumb finger pads for TI and while performing a motor activity with the same digits for MI. A supervised machine learning technique was applied to discriminate between the digits within the same given limb for both imagery conditions. Results: Both TI and MI exhibited similar patterns of ERD in the alpha and beta bands at the index, middle, and thumb digits within the left hand. While TI had significantly lower ERD for all three digits in both bands, the classification performance of TI-based BCI (77.74 ± 6.98%) was found to be similar to the MI-based BCI (78.36 ± 5.38%). Conclusions: The results of this study suggest that compound tactile imagery can be a viable alternative to MI for BCI classification. The study contributes to the growing body of evidence supporting the use of TI in BCI applications, and future research can build on this work to explore the potential of TI-based BCI for motor rehabilitation and the control of external devices.

4.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37042842

RESUMEN

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Asunto(s)
Actinas , Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-pim-1 , Humanos , Masculino , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Hipoxia , Proteómica , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Transducción de Señal , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Invasividad Neoplásica
5.
Brain Sci ; 13(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831864

RESUMEN

BACKGROUND: Reaction time is an important measure of sensorimotor performance and coordination and has been shown to improve with training. Various training methods have been employed in the past to improve reaction time. Tactile imagery (TI) is a method of mentally simulating a tactile sensation and has been used in brain-computer interface applications. However, it is yet unknown whether TI can have a learning effect and improve reaction time. OBJECTIVE: The purpose of this study was to investigate the effect of TI on reaction time in healthy participants. METHODS: We examined the reaction time to vibratory stimuli before and after a TI training session in an experimental group and compared the change in reaction time post-training with pre-training in the experimental group as well as the reaction time in a control group. A follow-up evaluation of reaction time was also conducted. RESULTS: The results showed that TI training significantly improved reaction time after TI compared with before TI by approximately 25% (pre-TI right-hand mean ± SD: 456.62 ± 124.26 ms, pre-TI left-hand mean ± SD: 448.82 ± 124.50 ms, post-TI right-hand mean ± SD: 340.32 ± 65.59 ms, post-TI left-hand mean ± SD: 335.52 ± 59.01 ms). Furthermore, post-training reaction time showed significant reduction compared with the control group and the improved reaction time had a lasting effect even after four weeks post-training. CONCLUSION: These findings indicate that TI training may serve as an alternate imagery strategy for improving reaction time without the need for physical practice.

6.
PLoS One ; 17(12): e0277187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454942

RESUMEN

A potential treatment for carpal tunnel syndrome is to biochemically alter the mechanical properties of the transverse carpal ligament (TCL) through Collagenase Clostridium Histolyticum (CCH) injection. The purpose of this study was to determine the time- and dose-dependent effects of CCH injection on TCL elastic modulus and thickness. Nine TCLs were dissected from cadaveric hands for this study. CCH doses of 50U, 100U, 150U, 200U, and 250U were injected into five points on the TCL, respectively. B-mode and shear wave elastography images were taken of each injection point using robot-assisted ultrasound imaging immediately after injection, as well as 2, 4, 6, 8, and 24 hours after injection. TCL thickness and mean shear wave speed were measured for each CCH dose at each time point. CCH doses of 200U and 250U decreased shear wave speed by 18.70% and 30.01% (p<0.05), respectively, after 24 hours. CCH doses of 150U, 200U, and 250U decreased TCL thickness by 7.28%, 10.97%, and 14.92%, respectively, after 24 hours (p<0.05). Our findings suggest that CCH injection may be effective in degrading TCL tissue, with higher doses of CCH resulting in greater tissue degradation up to 24 hours after injection.


Asunto(s)
Síndrome del Túnel Carpiano , Colagenasa Microbiana , Humanos , Módulo de Elasticidad , Ligamentos Articulares , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA