Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Biomedicines ; 12(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39335552

RESUMEN

In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating nanopores in cell membranes and rendering targeted cells nonviable. In the current study, canine patients (n = 5) with primary lung tumors underwent H-FIRE treatment with an applied voltage of 2250 V using a 2-5-2 µs H-FIRE waveform to achieve partial tumor ablation prior to the surgical resection of the primary tumor. Surgically resected tumor samples were evaluated histologically for tumor ablation, and with immunohistochemical (IHC) staining to identify cell death (activated caspase-3) and macrophages (IBA-1, CD206, and iNOS). Changes in immunity and inflammatory gene signatures were also evaluated in tumor samples. H-FIRE ablation was evident by the microscopic observation of discrete foci of acute hemorrhage and necrosis, and in a subset of tumors (n = 2), we observed a greater intensity of cleaved caspase-3 staining in tumor cells within treated tumor regions compared to adjacent untreated tumor tissue. At the study evaluation timepoint of 2 h post H-FIRE, we observed differential gene expression changes in the genes IDO1, IL6, TNF, CD209, and FOXP3 in treated tumor regions relative to paired untreated tumor regions. Additionally, we preliminarily evaluated the technical feasibility of delivering H-FIRE percutaneously under CT guidance to canine lung tumor patients (n = 2). Overall, H-FIRE treatment was well tolerated with no adverse clinical events, and our results suggest H-FIRE potentially altered the tumor immune microenvironment.

2.
IEEE Trans Biomed Eng ; PP2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320996

RESUMEN

Irreversible electroporation (IRE) is a minimally thermal tissue ablation modality used to treat solid tumors adjacent to critical structures. Widespread clinical adoption of IRE has been limited due to complicated anesthetic management requirements and technical demands associated with placing multiple needle electrodes in anatomically challenging environments. High-frequency irreversible electroporation (H-FIRE) delivered using a novel single-insertion bipolar probe system could potentially overcome these limitations, but ablation volumes have remained small using this approach. While H-FIRE is minimally thermal in mode of action, high voltages or multiple pulse trains can lead to unwanted Joule heating. In this work, we improve the H-FIRE waveform design to increase the safe operating voltage using a single-insertion bipolar probe before electrical arcing occurs. By uniformly increasing interphase ( d1) and interpulse ( d2) delays, we achieved higher maximum operating voltages for all pulse lengths. Additionally, increasing pulse length led to higher operating voltages up to a certain delay length (  âˆ¼ 25 µs), after which shorter pulses enabled higher voltages. We then delivered novel H-FIRE waveforms via an actively cooled single-insertion bipolar probe in swine liver in vivo to determine the upper limits to ablation volume possible using a single-needle H-FIRE device. Ablations up to 4.62 ± 0.12cm x 1.83 ± 0.05cm were generated in 5 minutes without a requirement for cardiac synchronization during treatment. Ablations were minimally thermal, easily visualized with ultrasound, and stimulated an immune response 24 hours post H-FIRE delivery. These data suggest H-FIRE can rapidly produce clinically relevant, minimally thermal ablations with a more user-friendly electrode design.

3.
APL Bioeng ; 8(2): 026117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835479

RESUMEN

The blood-brain barrier (BBB) limits the efficacy of treatments for malignant brain tumors, necessitating innovative approaches to breach the barrier. This study introduces burst sine wave electroporation (B-SWE) as a strategic modality for controlled BBB disruption without extensive tissue ablation and compares it against conventional pulsed square wave electroporation-based technologies such as high-frequency irreversible electroporation (H-FIRE). Using an in vivo rodent model, B-SWE and H-FIRE effects on BBB disruption, tissue ablation, and neuromuscular contractions are compared. Equivalent waveforms were designed for direct comparison between the two pulsing schemes, revealing that B-SWE induces larger BBB disruption volumes while minimizing tissue ablation. While B-SWE exhibited heightened neuromuscular contractions when compared to equivalent H-FIRE waveforms, an additional low-dose B-SWE group demonstrated that a reduced potential can achieve similar levels of BBB disruption while minimizing neuromuscular contractions. Repair kinetics indicated faster closure post B-SWE-induced BBB disruption when compared to equivalent H-FIRE protocols, emphasizing B-SWE's transient and controllable nature. Additionally, finite element modeling illustrated the potential for extensive BBB disruption while reducing ablation using B-SWE. B-SWE presents a promising avenue for tailored BBB disruption with minimal tissue ablation, offering a nuanced approach for glioblastoma treatment and beyond.

4.
Front Immunol ; 15: 1352821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711517

RESUMEN

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Asunto(s)
Modelos Animales de Enfermedad , Electroporación , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Ratones , Línea Celular Tumoral , Células Supresoras de Origen Mieloide/inmunología , Ratones Endogámicos C57BL , Humanos , Linfocitos T Reguladores/inmunología , Femenino
5.
Bioelectrochemistry ; 157: 108669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377890

RESUMEN

Intratumoral bacteria have been implicated in driving tumor progression, yet effective treatments to modulate the tumor microbiome remain limited. In this study, we investigate the use of electroporation in combination with metronidazole to enhance the clearance of intracellular Fusobacterium nucleatum within pancreatic cancer cells. We explore various parameters, including electric field strength, pulse width, and pulse number to assess the permeability of pancreatic cancer cells infected with F. nucleatum, compared to non-infected cells of the same type. We subsequently quantify the clearance of intracellular bacteria when these pulsing schemes are applied to a suspension of infected pancreatic cancer cells in the presence of metronidazole. Our results reveal distinct differences in cell permeability between infected and non-infected cells, identifying a unique biophysical marker for host cells infected with F. nucleatum. We demonstrate that the combinatorial use of electroporation and metronidazole significantly enhances the delivery of metronidazole into host cells, leading to more effective clearance of intracellular F. nucleatum compared to independent treatments; we term this novel approach Electro-Antibacterial Therapy (EAT). EAT holds promise as an innovative strategy for addressing intratumoral bacteria in pancreatic cancer, other malignancies, and potentially treatment-resistant infections, offering new avenues for therapeutic intervention.


Asunto(s)
Metronidazol , Neoplasias Pancreáticas , Humanos , Metronidazol/farmacología , Metronidazol/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fusobacterium nucleatum , Neoplasias Pancreáticas/tratamiento farmacológico
7.
Ann Biomed Eng ; 52(1): 48-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989902

RESUMEN

This study introduces a new method of targeting acidosis (low pH) within the tumor microenvironment (TME) through the use of cathodic electrochemical reactions (CER). Low pH is oncogenic by supporting immunosuppression. Electrochemical reactions create local pH effects when a current passes through an electrolytic substrate such as biological tissue. Electrolysis has been used with electroporation (destabilization of the lipid bilayer via an applied electric potential) to increase cell death areas. However, the regulated increase of pH through only the cathode electrode has been ignored as a possible method to alleviate TME acidosis, which could provide substantial immunotherapeutic benefits. Here, we show through ex vivo modeling that CERs can intentionally elevate pH to an anti-tumor level and that increased alkalinity promotes activation of naïve macrophages. This study shows the potential of CERs to improve acidity within the TME and that it has the potential to be paired with existing electric field-based cancer therapies or as a stand-alone therapy.


Asunto(s)
Acidosis , Neoplasias , Humanos , Neoplasias/terapia , Electroporación/métodos , Electricidad , Inmunidad , Microambiente Tumoral
8.
Micromachines (Basel) ; 14(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37763886

RESUMEN

Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression.

9.
Lab Chip ; 23(20): 4565-4578, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37772328

RESUMEN

Current basement membrane (BM) mimics used for modeling endothelial and epithelial barriers in vitro do not faithfully recapitulate key in vivo physiological properties such as BM thickness, porosity, stiffness, and fibrous composition. Here, we use networks of precisely arranged nanofibers to form ultra-thin (∼3 µm thick) and ultra-porous (∼90%) BM mimics for blood-brain barrier modeling. We show that these nanofiber networks enable close contact between endothelial monolayers and pericytes across the membrane, which are known to regulate barrier tightness. Cytoskeletal staining and transendothelial electrical resistance (TEER) measurements reveal barrier formation on nanofiber membranes integrated within microfluidic devices and transwell inserts. Further, significantly higher TEER values indicate a biological benefit for co-cultures formed on the ultra-thin nanofiber membranes. Our BM mimic overcomes critical technological challenges in forming co-cultures that are in proximity and facilitate cell-cell contact, while still being constrained to their respective sides. We anticipate that our nanofiber networks will find applications in drug discovery, cell migration, and barrier dysfunction studies.


Asunto(s)
Nanofibras , Porosidad , Barrera Hematoencefálica/fisiología , Técnicas de Cocultivo , Membrana Basal
10.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681314

RESUMEN

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Asunto(s)
Conexina 43 , Dextranos , Animales , Cobayas , Dextranos/metabolismo , Conexina 43/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Uniones Comunicantes/metabolismo , Albúminas/metabolismo , Manitol/farmacología , Manitol/metabolismo , Potenciales de Acción
11.
Adv Healthc Mater ; 12(28): e2300964, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37473719

RESUMEN

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.


Asunto(s)
Robótica , Animales , Ratones , Robótica/métodos , Diseño de Equipo , Miniaturización , Campos Magnéticos
12.
Cancers (Basel) ; 15(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37444450

RESUMEN

The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.

13.
Comput Biol Med ; 161: 107019, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220706

RESUMEN

The nonthermal mechanism for irreversible electroporation has been paramount for treating tumors and cardiac tissue in anatomically sensitive areas, where there is concern about damage to nearby bowels, ducts, blood vessels, or nerves. However, Joule heating still occurs as a secondary effect of applying current through a resistive tissue and must be minimized to maintain the benefits of electroporation at high voltages. Numerous thermal mitigation protocols have been proposed to minimize temperature rise, but intraoperative temperature monitoring is still needed. We show that an accurate and robust temperature prediction AI model can be developed using estimated tissue properties (bulk and dynamic conductivity), known geometric properties (probe spacing), and easily measurable treatment parameters (applied voltage, current, and pulse number). We develop the 2-layer neural network on realistic 2D finite element model simulations with conditions encompassing most electroporation applications. Calculating feature contributions, we found that temperature prediction is mostly dependent on current and pulse number and show that the model remains accurate when incorrect tissue properties are intentionally used as input parameters. Lastly, we show that the model can predict temperature rise within ex vivo perfused porcine livers, with error <0.5 °C. This model, using easily acquired parameters, is shown to predict temperature rise in over 1000 unique test conditions with <1 °C error and no observable outliers. We believe the use of simple, readily available input parameters would allow this model to be incorporated in many already available electroporation systems for real-time temperature estimations.


Asunto(s)
Terapia de Electroporación , Electroporación , Porcinos , Animales , Temperatura , Electroporación/métodos , Conductividad Eléctrica , Redes Neurales de la Computación
14.
Front Oncol ; 13: 1171278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213298

RESUMEN

Background: Irreversible electroporation (IRE) has been previously investigated in preclinical trials as a treatment for intracranial malignancies. Here, we investigate next generation high-frequency irreversible electroporation (H-FIRE), as both a monotherapy and a combinatorial therapy, for the treatment of malignant gliomas. Methods: Hydrogel tissue scaffolds and numerical modeling were used to inform in-vivo H-FIRE pulsing parameters for our orthotopic tumor-bearing glioma model. Fischer rats were separated into five treatment cohorts including high-dose H-FIRE (1750V/cm), low-dose H-FIRE (600V/cm), combinatorial high-dose H-FIRE + liposomal doxorubicin, low-dose H-FIRE + liposomal doxorubicin, and standalone liposomal doxorubicin groups. Cohorts were compared against a standalone tumor-bearing sham group which received no therapeutic intervention. To further enhance the translational value of our work, we characterize the local and systemic immune responses to intracranial H-FIRE at the study timepoint. Results: The median survival for each cohort are as follows: 31 days (high-dose H-FIRE), 38 days (low-dose H-FIRE), 37.5 days (high-dose H-FIRE + liposomal doxorubicin), 27 days (low-dose H-FIRE + liposomal doxorubicin), 20 days (liposomal doxorubicin), and 26 days (sham). A statistically greater overall survival fraction was noted in the high-dose H-FIRE + liposomal doxorubicin (50%, p = 0.044), high-dose H-FIRE (28.6%, p = 0.034), and the low-dose H-FIRE (20%, p = 0.0214) compared to the sham control (0%). Compared to sham controls, brain sections of rats treated with H-FIRE demonstrated significant increases in IHC scores for CD3+ T-cells (p = 0.0014), CD79a+ B-cells (p = 0.01), IBA-1+ dendritic cells/microglia (p = 0.04), CD8+ cytotoxic T-cells (p = 0.0004), and CD86+ M1 macrophages (p = 0.01). Conclusions: H-FIRE may be used as both a monotherapy and a combinatorial therapy to improve survival in the treatment of malignant gliomas while also promoting the presence of infiltrative immune cells.

15.
Bioelectrochemistry ; 152: 108415, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37011476

RESUMEN

The impact of cell shape on cell membrane permeabilization by pulsed electric fields is not fully understood. For certain applications, cell survival and recovery post-treatment is either desirable, as in gene transfection, electrofusion, and electrochemotherapy, or is undesirable, as in tumor and cardiac ablations. Understanding of how morphology affects cell viability post-electroporation may lead to improved electroporation methods. In this study, we use precisely aligned nanofiber networks within a microfluidic device to reproducibly generate elongated cells with controlled orientations to an applied electric field. We show that cell viability is significantly dependent on cell orientation, elongation, and spread. Further, these trends are dependent on the external buffer conductivity. Additionally, we see that cell survival for elongated cells is still supported by the standard pore model of electroporation. Lastly, we see that manipulating the cell orientation and shape can be leveraged for increased transfection efficiencies when compared to spherical cells. An improved understanding of cell shape and pulsation buffer conductivity may lead to improved methods for enhancing cell viability post-electroporation by engineering the cell morphology, cytoskeleton, and electroporation buffer conditions.


Asunto(s)
Electroquimioterapia , Nanofibras , Neoplasias , Humanos , Electroporación/métodos , Transfección , Electroquimioterapia/métodos , Supervivencia Celular
16.
IEEE Trans Biomed Eng ; 70(6): 1902-1910, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015676

RESUMEN

Tissue electroporation is the basis of several therapies. Electroporation is performed by briefly exposing tissues to high electric fields. It is generally accepted that electroporation is effective where an electric field magnitude threshold is overreached. However, it is difficult to preoperatively estimate the field distribution because it is highly dependent on anatomy and treatment parameters. OBJECTIVE: We developed PIRET, a platform to predict the treatment volume in electroporation-based therapies. METHODS: The platform seamlessly integrates tools to build patient-specific models where the electric field is simulated to predict the treatment volume. Patient anatomy is segmented from medical images and 3D reconstruction aids in placing the electrodes and setting up treatment parameters. RESULTS: Four canine patients that had been treated with high-frequency irreversible electroporation were retrospectively planned with PIRET and with a workflow commonly used in previous studies, which uses different general-purpose segmentation (3D Slicer) and modeling software (3Matic and COMSOL Multiphysics). PIRET outperformed the other workflow by 65 minutes (× 1.7 faster), thanks to the improved user experience during treatment setup and model building. Both approaches computed similarly accurate electric field distributions, with average Dice scores higher than 0.93. CONCLUSION: A platform which integrates all the required tools for electroporation treatment planning is presented. Treatment plan can be performed rapidly with minimal user interaction in a stand-alone platform. SIGNIFICANCE: This platform is, to the best of our knowledge, the most complete software for treatment planning of irreversible electroporation. It can potentially be used for other electroporation applications.


Asunto(s)
Electroquimioterapia , Animales , Perros , Electroquimioterapia/métodos , Estudios Retrospectivos , Electroporación/métodos , Programas Informáticos , Terapia de Electroporación
17.
Addit Manuf Lett ; 42023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814549

RESUMEN

Biomedical devices with millimeter and micron-scaled features have been a promising approach to single-cell analysis, diagnostics, and fundamental biological and chemical studies. These devices, however, have not been able to fully embrace the advantages of additive manufacturing (AM) that offers quick prototypes and complexities not achievable via traditional 2D fabrication techniques (e.g., soft lithography). This slow adoption of AM can be attributed in part to limited material selection, resolution, and inability to easily integrate components mid-print. Here, we present the feasibility of using liquid dielectrophoresis to manipulate and shape a droplet of build material, paired with subsequent curing and stacking, to generate 3D parts. This Electric Field Fabrication (EFF) technique is an additive manufacturing method that offers advantages such as new printable materials and mixed-media parts without post-assembly for biomedical applications.

18.
Annu Rev Biomed Eng ; 25: 77-100, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36854260

RESUMEN

Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.


Asunto(s)
Electroquimioterapia , Neoplasias , Animales , Humanos , Electroporación , Transfección , Neoplasias/terapia , Terapia de Electroporación , Terapia Genética , Mamíferos
19.
bioRxiv ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778450

RESUMEN

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.

20.
Front Vet Sci ; 9: 1039745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330152

RESUMEN

The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...