Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3168, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280220

RESUMEN

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Asunto(s)
Bioimpresión , Neoplasias , Humanos , Evaluación Preclínica de Medicamentos/métodos , Organoides/metabolismo , Neoplasias/patología , Interferometría
2.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37292676

RESUMEN

Sarcomas are a family of rare malignancies composed of over 100 distinct histological subtypes. The rarity of sarcoma poses significant challenges in conducting clinical trials to identify effective therapies, to the point that many rarer subtypes of sarcoma do not have standard-of-care treatment. Even for established regimens, there can be substantial heterogeneity in responses. Overall, novel, personalized approaches for identifying effective treatments are needed to improve patient out-comes. Patient-derived tumor organoids (PDTOs) are clinically relevant models representative of the physiological behavior of tumors across an array of malignancies. Here, we use PDTOs as a tool to better understand the biology of individual tumors and characterize the landscape of drug resistance and sensitivity in sarcoma. We collected n=194 specimens from n=126 sarcoma patients, spanning 24 distinct subtypes. We characterized PDTOs established from over 120 biopsy, resection, and metastasectomy samples. We leveraged our organoid high-throughput drug screening pipeline to test the efficacy of chemotherapeutics, targeted agents, and combination therapies, with results available within a week from tissue collection. Sarcoma PDTOs showed patient-specific growth characteristics and subtype-specific histopathology. Organoid sensitivity correlated with diagnostic subtype, patient age at diagnosis, lesion type, prior treatment history, and disease trajectory for a subset of the compounds screened. We found 90 biological pathways that were implicated in response to treatment of bone and soft tissue sarcoma organoids. By comparing functional responses of organoids and genetic features of the tumors, we show how PDTO drug screening can provide an orthogonal set of information to facilitate optimal drug selection, avoid ineffective therapies, and mirror patient outcomes in sarcoma. In aggregate, we were able to identify at least one effective FDA-approved or NCCN-recommended regimen for 59% of the specimens tested, providing an estimate of the proportion of immediately actionable information identified through our pipeline. Highlights: Standardized organoid culture preserve unique sarcoma histopathological featuresDrug screening on patient-derived sarcoma organoids provides sensitivity information that correlates with clinical features and yields actionable information for treatment guidanceHigh-throughput screenings provide orthogonal information to genetic sequencingSarcoma organoid response to treatment correlates with patient response to therapyLarge scale, functional precision medicine programs for rare cancers are feasible within a single institution.

3.
Sci Adv ; 8(7): eabl3674, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171675

RESUMEN

Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.


Asunto(s)
Antineoplásicos , Cordoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cordoma/tratamiento farmacológico , Cordoma/metabolismo , Cordoma/patología , Descubrimiento de Drogas , Humanos , Organoides/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA