Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Nat Ment Health ; 2(2): 164-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948238

RESUMEN

Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (ß = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.

2.
medRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947056

RESUMEN

Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.

3.
Med Image Anal ; 97: 103231, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38941858

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.

4.
AMIA Jt Summits Transl Sci Proc ; 2024: 344-353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827096

RESUMEN

Neurodegenerative processes are increasingly recognized as potential causative factors in Alzheimer's disease (AD) pathogenesis. While many studies have leveraged mediation analysis models to elucidate the underlying mechanisms linking genetic variants to AD diagnostic outcomes, the majority have predominantly focused on regional brain measure as a mediator, thereby compromising the granularity of the imaging data. In our investigation, using the imaging genetics data from a landmark AD cohort, we contrasted both region-based and voxel-based brain measurements as imaging endophenotypes, and examined their roles in mediating genetic effects on AD outcomes. Our findings underscored that using voxel-based morphometry offers enhanced statistical power. Moreover, we delineated specific mediation pathways between SNP, brain volume, and AD outcomes, shedding light on the intricate relationship among these variables.

5.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915636

RESUMEN

INTRODUCTION: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. METHODS: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. RESULTS: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38848574

RESUMEN

Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than 250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.

7.
Nat Aging ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942983

RESUMEN

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.

8.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746228

RESUMEN

Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38742150

RESUMEN

Glioblastoma (GBM) is most aggressive and common adult brain tumor. The standard treatments typically include maximal surgical resection, followed adjuvant radiotherapy and chemotherapy. However, the efficacy of these treatment is often limited, as tumor often infiltrate into the surrounding brain tissue, often extending beyond the radiologically defined margins. This infiltration contributes to the high recurrence rate and poor prognosis associated with GBM patients, necessitating advanced methods for early and accurate detection of tumor infiltration. Despite the great promise traditional supervised machine learning shows in predicting tumor infiltration beyond resectable margins, these methods are heavily reliant on expert-drawn Regions of Interest (ROIs), which are used to construct multi-variate models of different Magnetic Resonance (MR) signal characteristics associated with tumor infiltration. This process is both time consuming and resource intensive. Addressing this limitation, our study proposes a novel integration of fully automatic methods for generating ROIs with deep learning algorithms to create predictive maps of tumor infiltration. This approach uses pre-operative multi-parametric MRI (mpMRI) scans, encompassing T1, T1Gd, T2, T2-FLAIR, and ADC sequences, to fully leverage the knowledge from previously drawn ROIs. Subsequently, a patch based Convolutional Neural Network (CNN) model is trained on these automatically generated ROIs to predict areas of potential tumor infiltration. The performance of this model was evaluated using a leave-one-out cross-validation approach. Generated predictive maps binarized for comparison against post-recurrence mpMRI scans. The model demonstrates robust predictive capability, evidenced by the average cross-validated accuracy of 0.87, specificity of 0.88, and sensitivity of 0.90. Notably, the odds ratio of 8.62 indicates that regions identified as high-risk on the predictive map were significantly more likely to exhibit tumor recurrence than low-risk regions. The proposed method demonstrates that a fully automatic mpMRI analysis using deep learning can successfully predict tumor infiltration in peritumoral region for GBM patients while bypassing the intensive requirement for expert-drawn ROIs.

10.
Biomedicines ; 12(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790903

RESUMEN

Dementia poses a substantial global health challenge, warranting an exploration of its intricate pathophysiological mechanisms and potential intervention targets. Leveraging multi-omic technology, this study utilizes data from 2251 participants to construct classification models using lipidomic, gut metabolomic, and cerebrospinal fluid (CSF) proteomic markers to distinguish between the states of cognitive decline, namely, the cognitively unimpaired state, mild cognitive impairment, and dementia. The analysis identifies three CSF proteins (apolipoprotein E, neuronal pentraxin-2, and fatty-acid-binding protein), four lipids (DEDE.18.2, DEDE.20.4, LPC.O.20.1, and LPC.P.18.1), and five serum gut metabolites (Hyodeoxycholic acid, Glycohyodeoxycholic acid, Hippuric acid, Glyceric acid, and Glycodeoxycholic acid) capable of predicting dementia prevalence from cognitively unimpaired participants, achieving Area Under the Curve (AUC) values of 0.879 (95% CI: 0.802-0.956), 0.766 (95% CI: 0.700-0.835), and 0.717 (95% CI: 0.657-0.777), respectively. Furthermore, exclusively three CSF proteins exhibit the potential to predict mild cognitive impairment prevalence from cognitively unimpaired subjects, with an AUC of 0.760 (95% CI: 0.691-0.828). In conclusion, we present novel combinations of lipids, gut metabolites, and CSF proteins that showed discriminative abilities between the states of cognitive decline and underscore the potential of these molecules in elucidating the mechanisms of cognitive decline.

11.
Biol Psychiatry ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718880

RESUMEN

Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38584725

RESUMEN

We introduce an informative metric, called morphometric correlation, as a measure of shared neuroanatomic similarity between two cognitive traits. Traditional estimates of trait correlations can be confounded by factors beyond brain morphology. To exclude these confounding factors, we adopt a Gaussian kernel to measure the morphological similarity between individuals and compare pure neuroanatomic correlations among cognitive traits. In our empirical study, we employ a multiscale strategy. Given a set of cognitive traits, we first perform morphometric correlation analysis for each pair of traits to reveal their shared neuroanatomic correlation at the whole brain (or global) level. After that, we extend our whole brain concept to regional morphometric correlation and estimate shared neuroanatomic similarity between two cognitive traits at the regional (or local) level. Our results demonstrate that morphometric correlation can provide insights into shared neuroanatomic architecture between cognitive traits. Furthermore, we also estimate the morphometricity of each cognitive trait at both global and local levels, which can be used to better understand how neuroanatomic changes influence individuals' cognitive status.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38656243

RESUMEN

It is not well understood how neighborhood disadvantage is associated with specific domains of cognitive function and underlying brain health within older adults. Thus, the objective was to examine associations between neighborhood disadvantage, brain health, and cognitive performance, and examine whether associations were more pronounced among women. The study included 136 older adults who underwent cognitive testing and MRI. Neighborhood disadvantage was characterized using the Area Deprivation Index (ADI). Descriptive statistics, bivariate correlations, and multiple regressions were run. Multiple regressions, adjusted for age, sex, education, and depression, showed that higher ADI state rankings (greater disadvantage) were associated with poorer working memory performance (p < .01) and lower hippocampal volumes (p < .01), but not total, frontal, and white matter lesion volumes, nor visual and verbal memory performance. There were no significant sex interactions. Findings suggest that greater neighborhood disadvantage may play a role in working memory and underlying brain structure.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38684319

RESUMEN

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38650741

RESUMEN

Glioblastoma (GBM) is the most common and aggressive brain tumor with short overall survival (OS) of about 15 months. Understanding the causal factors affecting the patient survival is crucial for disease prognosis and treatment planning. Although previous efforts on survival prediction using multi-omics data has yielded useful predictive models, the causation of the correlated genetic risk factors has not been addressed. Recent advances in causal deep learning models enable the study of causality from complex dataset. In this paper, we leverage the recently proposed structural causal model (SCM) with normalizing flows parameterized by deep networks to perform the counterfactual query to investigate the causal relationship between gene mutation and OS with the presence of other confounders including sex, age and radiomics features. The query amounts to the question that what the survival days will be if the gene mutation status has been changed, i.e., from mutant to non-mutant and vice versa. The trained causal model will infer the counterfactual outcome given the intervention on specific gene mutation. We apply multivariate Cox-PH model to find the genes associated with survival, and investigate the causal genetic effect by comparing the original and counterfactual survival days in a bi-directional fashion. Particularly, the following two scenarios are considered: (1) intervention on a specific gene with non-mutant status to generate the counterfactual survival days as if the gene is mutant, with which the original survival days of the subjects with that mutant gene will be compared; (2) intervention on the gene with mutant status and perform the comparison with survival days of subjects with that non-mutant gene. Our experimental results show that no causation of two correlated genes (NF1, RB1) was revealed in the cohort (n=181), while their genetic effects on OS in terms of prolonging or shortening are generally in accordance with clinical findings.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38651004

RESUMEN

Radiomics has been widely recognized for its effectiveness in decoding tumor phenotypes through the extraction of quantitative imaging features. However, the robustness of radiomic methods to estimate clinically relevant biomarkers non-invasively remains largely untested. In this study, we propose Cascaded Data Processing Network (CDPNet), a radiomic feature learning method to predict tumor molecular status from medical images. We apply CDPNet to an epigenetic case, specifically targeting the estimation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation from Magnetic Resonance Imaging (MRI) scans of glioblastoma patients. CDPNet has three components: 1) Principal Component Analysis (PCA), 2) Fisher Linear Discriminant (FLD), and 3) a combination of hashing and blockwise histograms. The outlined architectural framework capitalizes on PCA to reconstruct input image patches, followed by FLD to extract discriminative filter banks, and finally using binary hashing and blockwise histogram module for indexing, pooling, and feature generation. To validate the effectiveness of CDPNet, we conducted an exhaustive evaluation on a comprehensive retrospective cohort comprising 484 IDH-wildtype glioblastoma patients with pre-operative multi-parametric MRI scans (T1, T1-Gd, T2, and T2-FLAIR). The prediction of MGMT promoter methylation status was cast as a binary classification problem. The developed model underwent rigorous training via 10-fold cross-validation on a discovery cohort of 446 patients. Subsequently, the model's performance was evaluated on a distinct and previously unseen replication cohort of 38 patients. Our method achieved an accuracy of 70.11% and an area under the curve of 0.71 (95% CI: 0.65 - 0.74).

17.
Alzheimers Res Ther ; 16(1): 94, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689358

RESUMEN

BACKGROUND: Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-ß [Aß42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-ß status modified these associations. METHODS: Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance. RESULTS: Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aß42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aß42/40 (higher Aß burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aß burden, as was the association of higher GFAP with memory decline. CONCLUSIONS: Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Atrofia , Biomarcadores , Encéfalo , Disfunción Cognitiva , Proteínas tau , Humanos , Femenino , Masculino , Biomarcadores/sangre , Anciano , Atrofia/patología , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/patología , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Estudios Longitudinales , Proteína Ácida Fibrilar de la Glía/sangre , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas de Neurofilamentos/sangre , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética , Fragmentos de Péptidos/sangre
18.
iScience ; 27(3): 109212, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433927

RESUMEN

Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.

19.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521789

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Humanos , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/fisiología , Análisis de la Aleatorización Mendeliana
20.
J Alzheimers Dis ; 98(1): 231-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393899

RESUMEN

Background: Blood-based biomarkers (BBMs) are of growing interest in the field of Alzheimer's disease (AD) and related dementias. Objective: This study aimed to assess the ability of plasma biomarkers to 1) predict disease progression from mild cognitive impairment (MCI) to dementia and 2) improve the predictive ability of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) measures when combined. Methods: We used data from the Alzheimer's Disease Neuroimaging Initiative. Machine learning models were trained using the data from participants who remained cognitively stable (CN-s) and with Dementia diagnosis at 2-year follow-up visit. The models were used to predict progression to dementia in MCI individuals. We assessed the performance of models with plasma biomarkers against those with CSF and MRI measures, and also in combination with them. Results: Our models with plasma biomarkers classified CN-s individuals from AD with an AUC of 0.75±0.03 and could predict conversion to dementia in MCI individuals with an AUC of 0.64±0.03 (17.1% BP, base prevalence). Models with plasma biomarkers performed better when combined with CSF and MRI measures (CN versus AD: AUC of 0.89±0.02; MCI-to-AD: AUC of 0.76±0.03, 21.5% BP). Conclusions: Our results highlight the potential of plasma biomarkers in predicting conversion to dementia in MCI individuals. While plasma biomarkers could improve the predictive ability of CSF and MRI measures when combined, they also show the potential to predict non-progression to AD when considered alone. The predictive ability of plasma biomarkers is crucially linked to reducing the costly and effortful collection of CSF and MRI measures.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Progresión de la Enfermedad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Imagen por Resonancia Magnética/métodos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...