Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 289(52): 36336-51, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25378409

RESUMEN

Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports quinine, quinidine, and verapamil, indicating that the protein behaves as a multidrug resistance carrier. Detailed kinetic analyses revealed that chloroquine and quinine compete for transport via PfCRT in a manner that is consistent with mixed-type inhibition. Moreover, our analyses suggest that PfCRT accepts chloroquine and quinine at distinct but antagonistically interacting sites. We also found verapamil to be a partial mixed-type inhibitor of chloroquine transport via PfCRT, further supporting the idea that PfCRT possesses multiple substrate-binding sites. Our findings provide new mechanistic insights into the workings of PfCRT, which could be exploited to design potent inhibitors of this key mediator of drug resistance.


Asunto(s)
Antimaláricos/metabolismo , Proteínas de Transporte de Membrana/fisiología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/fisiología , Animales , Antimaláricos/farmacología , Sitios de Unión , Unión Competitiva , Transporte Biológico , Células Cultivadas , Cloroquina/metabolismo , Cloroquina/farmacología , Resistencia a Medicamentos , Femenino , Concentración de Iones de Hidrógeno , Cinética , Proteínas Protozoarias/antagonistas & inhibidores , Quinidina/metabolismo , Quinina/metabolismo , Verapamilo/metabolismo , Verapamilo/farmacología , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 111(17): E1759-67, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24728833

RESUMEN

Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage.


Asunto(s)
Cloroquina/metabolismo , Resistencia a Medicamentos , Malaria Falciparum/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación/genética , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico , Haplotipos , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oocitos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Transfección , Xenopus laevis
3.
Mol Microbiol ; 76(6): 1591-606, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20487273

RESUMEN

The human malaria parasite Plasmodium falciparum is capable of adapting to vastly different extracellular Ca(2+) environments while maintaining tight control of its intracellular Ca(2+) concentration. The mechanisms underpinning Ca(2+) homeostasis in this important pathogen are only partly understood. Here we have functionally expressed the putative Ca(2+)/H(+) antiporter PfCHA in Xenopus laevis oocytes. Our data suggest that PfCHA mediates H(+)-coupled Ca(2+) and Mn(2+) exchange. The apparent dissociation constant K(M) for Ca(2+) of 2.2 +/- 0.7 mM and the maximal velocity V(max) of 0.6 +/- 0.1 nmol per oocyte per hour are consistent with PfCHA being a low-affinity high-capacity Ca(2+) carrier. In the parasite, PfCHA was found to localize to the mitochondrion. Physiological studies conducted with live parasitized erythrocytes, and using Fluo-4 and Rhod-2 to monitor cytoplasmic and mitochondrial Ca(2+) dynamics, suggest that the mitochondrion serves as a dynamic Ca(2+) store and that PfCHA functions as a Ca(2+) efflux system expelling excess Ca(2+) from the mitochondrion. PfCHA lacks appreciable homologies to the human mitochondrial Ca(2+)/H(+) exchanger and might represent an evolutionary divergent class of mitochondrial cation antiporter, which, in turn, might provide novel opportunities for intervention.


Asunto(s)
Antiportadores/metabolismo , Cationes Bivalentes/metabolismo , Proteínas Mitocondriales/metabolismo , Plasmodium falciparum/metabolismo , Protones , Proteínas Protozoarias/metabolismo , Animales , Antiportadores/genética , Calcio/metabolismo , Expresión Génica , Cinética , Manganeso/metabolismo , Mitocondrias/química , Proteínas Mitocondriales/genética , Modelos Biológicos , Modelos Moleculares , Oocitos , Plasmodium falciparum/genética , Unión Proteica , Proteínas Protozoarias/genética , Xenopus laevis
4.
Int J Parasitol ; 40(10): 1109-18, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20399785

RESUMEN

Drug resistance represents a major obstacle in the radical control of malaria. Drug resistance can arise in many different ways, but recent developments highlight the importance of mutations in transporter molecules as being major contributors to drug resistance in the human malaria parasite Plasmodium falciparum. While approximately 2.5% of the P. falciparum genome encodes membrane transporters, this review concentrates on three transporters, namely the chloroquine resistance transporter PfCRT, the multi-drug resistance transporter 1 PfMDR1, and the multi-drug resistance-associated protein PfMRP, which have been strongly associated with resistance to the major antimalarial drugs. The studies that identified these entities as contributors to resistance, and the possible molecular mechanisms that can bring about this phenotype, are discussed. A deep understanding of the underpinning mechanisms, and of the structural specificities of the players themselves, is a necessary basis for the development of the new drugs that will be needed for the future armamentarium against malaria.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/fisiología , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...