Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; : 110065, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004413

RESUMEN

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i.p.) 1 hour prior to ketamine or HNKs (10 mg/kg, i.p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 hours post-injection (t24h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38867362

RESUMEN

BACKGROUND: Habenula, a hub brain region controlling monoaminergic brain center, has been implicated in major depressive disorder (MDD) and as a possible target of antidepressant response. Nevertheless, the effect of antidepressant drug treatment on habenular volumes remains unknown. The objective of the present research was to study habenular volume change after antidepressant treatment in patients with MDD, and assess whether it is associated with clinical improvement. METHODS: Fifty patients with a current major depressive episode (MDE) in the context of MDD, and antidepressant-free for at least 1 month, were assessed for habenula volume (3T MRI with manual segmentation) before and after a 3 months sequence of venlafaxine antidepressant treatment. RESULTS: A 2.3% significant increase in total habenular volume (absolute volume: P = 0.0013; relative volume: P = 0.0055) and a 3.3% significant increase in left habenular volume (absolute volume: P = 0.00080; relative volume: P = 0.0028) were observed. A significant greater variation was observed in male patients (4.8%) compared to female patients. No association was observed between habenular volume changes and response and remission. Some habenula volume changes were associated with improvement of olfactory pleasantness. CONCLUSION: Habenular volumes increased after 3 months of venlafaxine treatment in depressed patients. Further studies should assess whether cell proliferation and density or dendritic structure variations are implied in these volume changes.

3.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352378

RESUMEN

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

4.
Psychol Med ; 54(2): 289-298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37226550

RESUMEN

BACKGROUND: Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS: Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS: As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS: These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid ß-oxidation impairment during major depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Carnitina , Metabolómica , Antidepresivos
5.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808799

RESUMEN

BACKGROUND: Serotonin (5-HT) receptors and N -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( R , S )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT 4 R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia. METHODS: A single injection of saline (Sal), ( R , S )-ketamine (K), prucalopride (P), or a combined dose of ( R , S )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes. Drug efficacy was assayed using the forced swim test (FST), elevated plus maze (EPM), open field (OF), marble burying (MB), and novelty-suppressed feeding (NSF). Patch clamp electrophysiology was used to measure the effects of combined drug on neural activity in hippocampal CA3. c-fos and parvalbumin (PV) expression in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was examined using immunohistochemistry and network analysis. RESULTS: We found that a combination of K+P, given before or after stress, exerted additive effects, compared to either drug alone, in reducing a variety of stress-induced behaviors in both sexes. Combined K+P administration significantly altered c-fos and PV expression and network activity in the HPC and mPFC. CONCLUSIONS: Our results indicate that combined K+P has additive benefits for combating stress-induced pathophysiology, both at the behavioral and neural level. Our findings provide preliminary evidence that future clinical studies using this combined treatment strategy may prove advantageous in protecting against a broader range of stress-induced psychiatric disorders.

6.
Fundam Clin Pharmacol ; 37(6): 1119-1128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37161789

RESUMEN

Major depressive disorder (MDD) is a serious public health problem, as it is the most common psychiatric disorder worldwide. Antidepressant drugs increase adult hippocampal neurogenesis, which is required to induce some behavioral effects of antidepressants. Adult-born granule cells in the dentate gyrus (DG) and the glutamate receptors subunits 2 (GluN2B) subunit of N-methyl-D-aspartate (NMDA) ionotropic receptors play an important role in these effects. However, the precise neurochemical role of the GluN2B subunit of the NMDA receptor on adult-born GCs for antidepressant-like effects has yet to be elucidated. The present study aims to explore the contribution of the GluN2B-containing NMDA receptors in the ventral dentate gyrus (vDG) to the antidepressant drug treatment using a pharmacological approach. Thus, (αR)-(4-hydroxyphenyl)-(ßS)-methyl-4-(phenylmethyl)-1-piperidinepropanol (Ro25-6981), a selective antagonist of the GluN2B subunit, was acutely administered locally into the ventral DG (vDG, 1 µg each side) following a chronic fluoxetine (18 mg/kg/day) treatment-known to increase adult hippocampal neurogenesis-in a mouse model of anxiety/depression. Responses in a neurogenesis-dependent task, the novelty suppressed feeding (NSF), and neurochemical consequences on extracellular glutamate and gamma-aminobutyric acid (GABA) levels in the vDG were measured. Here, we show a rapid-acting antidepressant-like effect of local Ro25-6981 administration in the NSF independent of fluoxetine treatment. Furthermore, we revealed a fluoxetine-independent increase in the glutamatergic transmission in the vDG. Our results suggest behavioral and neurochemical effects of GluN2B subunit independent of serotonin reuptake inhibition.


Asunto(s)
Trastorno Depresivo Mayor , Fluoxetina , Humanos , Ratones , Animales , Fluoxetina/farmacología , Receptores de N-Metil-D-Aspartato , Ácido Glutámico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores , Antidepresivos/farmacología , Transmisión Sináptica
7.
Psychol Med ; 53(6): 2307-2316, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35115069

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment. METHODS: l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome. RESULTS: As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12-0.24; p < 0.00001], and l-carnitine levels (coefficient: -0.58; 95% CI -0.75 to -0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: -0.41; 95% CI -0.47 to -0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03-1.27; p = 0.015). CONCLUSIONS: Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.


Asunto(s)
Acetilcarnitina , Trastorno Depresivo Mayor , Humanos , Acetilcarnitina/uso terapéutico , Carnitina , Trastorno Depresivo Mayor/tratamiento farmacológico , Estudios de Casos y Controles , Antidepresivos/uso terapéutico
8.
Neuropharmacology ; 225: 109357, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462636

RESUMEN

In 2019, an intranasal (IN) spray of esketamine SPRAVATO® was approved as a fast-acting antidepressant by drug Agencies US FDA and European EMA. At sub-anesthetic doses, (±)-ketamine, a non-competitive glutamate N-methyl-d-aspartate (NMDA) receptor antagonist, increases the overall excitability of the medial prefrontal cortex (mPFC), an effect being essential for its rapid antidepressant activity. We wondered if this effect of ketamine could come from changes in the balance between neuronal excitation and inhibition (E/I balance) in the mPFC. Here, we performed a preclinical approach to study neurochemical and behavioral responses to a single IN ketamine dose in BALB/cJ mice, a strain more sensitive to stress. By using in vivo microdialysis, we measured cortical E/I balance as the ratio between glutamate to GABA extracellular levels 24 h post-ketamine. We found, for the first time, that E/I balance was shifted in favor of excitation rather than inhibition in the mPFC but more robustly with IN KET than with a single intraperitoneal (IP) dose. Increases in plasma and brain ketamine, norketamine and HNKs levels suggest different metabolic profiles of IP and IN ketamine 30 min post-dose. A significantly larger proportion of ketamine and HNKs in the brain are derived from the IN route 30 min post-dose. It may be linked to the greater magnitude in E/I ratio following IN delivery relative to IP at t24 h. This study suggests that both IP and IN are effective brain delivery methods inducing similar sustained antidepressant efficacy of KET, but the way they induced neurotransmitter changes is slightly different.


Asunto(s)
Ketamina , Ratones , Animales , Ketamina/farmacología , Antidepresivos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Front Pharmacol ; 13: 993449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386166

RESUMEN

Major depressive disorder (MDD) is the psychiatric disorder with the highest prevalence in the world. Pharmacological antidepressant treatment (AD), such as selective serotonin reuptake inhibitors [SSRI, i.e., fluoxetine (Flx)] is the first line of treatment for MDD. Despite its efficacy, lack of AD response occurs in numerous patients characterizing Difficult-to-treat Depression. ElectroConvulsive Therapy (ECT) is a highly effective treatment inducing rapid improvement in depressive symptoms and high remission rates of ∼50-63% in patients with pharmaco-resistant depression. Nevertheless, the need to develop reliable treatment response predictors to guide personalized AD strategies and supplement clinical observation is becoming a pressing clinical objective. Here, we propose to establish a proteomic peripheral biomarkers signature of ECT response in an anxio/depressive animal model of non-response to AD. Using an emotionality score based on the analysis complementary behavioral tests of anxiety/depression (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test), we showed that a 4-week corticosterone treatment (35 µg/ml, Cort model) in C57BL/6JRj male mice induced an anxiety/depressive-like behavior. A 28-day chronic fluoxetine treatment (Flx, 18 mg/kg/day) reduced corticosterone-induced increase in emotional behavior. A 50% decrease in emotionality score threshold before and after Flx, was used to separate Flx-responding mice (Flx-R, n = 18), or Flx non-responder mice (Flx-NR, n = 7). Then, Flx-NR mice received seven sessions of electroconvulsive seizure (ECS, equivalent to ECT in humans) and blood was collected before and after ECS treatment. Chronic ECS normalized the elevated emotionality observed in Flx-NR mice. Then, proteins were extracted from peripheral blood mononuclear cells (PBMCs) and isolated for proteomic analysis using a high-resolution MS Orbitrap. Data are available via ProteomeXchange with identifier PXD037392. The proteomic analysis revealed a signature of 33 peripheral proteins associated with response to ECS (7 down and 26 upregulated). These proteins were previously associated with mental disorders and involved in regulating pathways which participate to the depressive disorder etiology.

10.
Drug Alcohol Depend ; 240: 109653, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209675

RESUMEN

BACKGROUND: Understanding mechanisms associated with depressed smokers is a relevant question given that tobacco use disorder with comorbid major depressive disorder (MDD) has worse outcomes. The beta-arrestin 1 (ARRB1) pathway is a suggested biomarker for major depressive disorder and is involved in both antidepressant mechanism of action and tobacco addiction. We aimed to assess the association between smoking and peripheral ARRB1 expression in participants who exhibited MDD with current major depressive episode (MDE). BASIC PROCEDURES: 61 participants who exhibited MDD with current MDE with a score above 17 on the Hamilton Depression Rating Scale (HDRS), and who were free from antidepressant drug treatment for at least one month before inclusion, were assessed for tobacco use and cigarettes/day. Peripheral ARRB1 expression was assessed by sandwich ELISA from peripheral blood mononuclear cells (PBMC). FINDINGS: In participants who exhibited MDD with current MDE, peripheral ARRB1 expression was lower in tobacco users (n = 20, mean (SD) 4.795 (1.04) ng/mg of total protein) compared to non-tobacco users (n = 41, mean (SD) 6.19 (1.56) ng/mg; FDR p-value= 0.0044). Higher daily tobacco consumption was associated with lower peripheral ARRB1 expression (r = -0.314; FDR p-value=0.037). CONCLUSIONS: Tobacco consumption should be considered in studies of ARRB1 in participants who exhibit MDD. ARRB1 signaling is a new target of interest with a potential clinical implication for people with MDD and tobacco use disorder.


Asunto(s)
Trastorno Depresivo Mayor , Tabaquismo , beta-Arrestina 1 , Humanos , Antidepresivos/uso terapéutico , beta-Arrestina 1/sangre , beta-Arrestina 1/metabolismo , Depresión , Trastorno Depresivo Mayor/metabolismo , Leucocitos Mononucleares/metabolismo , Uso de Tabaco , Tabaquismo/metabolismo
11.
J Affect Disord ; 299: 335-343, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906639

RESUMEN

BACKGROUND: Pharmacological studies have yielded valuable insights into the role of the serotonin 4 receptor (HTR4) in major depressive episodes (MDE) and response to antidepressant drugs (AD). A genetic association has been shown between HTR4 and susceptibility to mood disorders. Our study aims at assessing the association between the HTR4 genetic polymorphism, rs1345697, and improvement in depressive symptoms and remission after antidepressant treatment in MDE patients. METHODS: 492 depressed patients from the METADAP cohort were treated prospectively for 6 months with ADs. The clinical outcomes according to HTR4 rs1345697 were compared after 1 (M1), 3 (M3), and 6 (M6) months of treatment. Mixed-effects logistic regression and adjusted linear models assessed the association between rs1345697 and 17-item Hamilton Depression Rating Scale (HDRS) score improvement and response/remission. RESULTS: Over the 6 months of treatment, mixed-effects regressions showed lower improvements in HDRS scores (Coefficient=1.52; Confident Interval (CI) 95% [0.37-2.67]; p = 0.009) and lower remission rates (Odds Ratio=2.0; CI95% [1.0-4.1]; p = 0.05) in GG homozygous patients as compared to allele A carriers. LIMITATIONS: The major limitations of our study are the uncertainty of the rs1345697 effect on HTR4 function, the substantial drop-out rate, and the fact that analysis is not based on randomization between polymorphism groups. CONCLUSIONS: In our study, patients who were homozygous carriers of the variant G of the HTR4 rs1345697 had lower depressive symptoms improvement and 2-fold lower remission rates after antidepressant treatment as compared to allele A carriers. Randomization study should be done to confirm these results.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de Serotonina 5-HT4 , Antidepresivos/uso terapéutico , Compuestos Azo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Genotipo , Humanos , Polimorfismo Genético , Receptores de Serotonina 5-HT4/uso terapéutico , Resultado del Tratamiento
12.
Psychol Med ; : 1-9, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087184

RESUMEN

BACKGROUND: It is unclear whether olfactory deficits improve after remission in depressed patients. Therefore, we aimed to assess in drug-free patients the olfactory performance of patients with major depressive episodes (MDE) and its change after antidepressant treatment. METHODS: In the DEP-ARREST-CLIN study, 69 drug-free patients with a current MDE in the context of major depressive disorder (MDD) were assessed for their olfactory performances and depression severity, before and after 1 (M1) and 3 (M3) months of venlafaxine antidepressant treatment. They were compared to 32 age- and sex-matched healthy controls (HCs). Olfaction was assessed with a psychophysical test, the Sniffin' Sticks test (Threshold: T score; Discrimination: D score; Identification: I score; total score: T + D + I = TDI score) and Pleasantness (pleasantness score: p score; neutral score: N score; unpleasantness score: U score). RESULTS: As compared to HCs, depressed patients had lower TDI olfactory scores [mean (s.d.) 30.0(4.5) v. 33.3(4.2), p < 0.001], T scores [5.6(2.6) v. 7.4(2.6), p < 0.01], p scores [7.5(3.0) v. 9.8(2.8), p < 0.001)] and higher N scores [3.5(2.6) v. 2.1(1.8), p < 0.01]. T, p and N scores at baseline were independent from depression and anhedonia severity. After venlafaxine treatment, significant increases of T scores [M1: 7.0(2.6) and M3: 6.8(3.1), p < 0.01] and p scores [M1: 8.1(3.0) and M3: 8.4(3.3), p < 0.05] were evidenced, in remitters only (T: p < 0.01; P: p < 0.01). Olfaction improvement was mediated by depression improvement. CONCLUSIONS: The olfactory signature of MDE is restored after venlafaxine treatment. This olfaction improvement is mediated by depression improvement.

13.
Cell Rep ; 32(1): 107865, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640230

RESUMEN

Chronic exposure to stress is a major risk factor for neuropsychiatric disease, and elevated plasma corticosterone (CORT) correlates with reduced levels of both brain-derived neurotrophic factor (BDNF) and hippocampal neurogenesis. Precisely how these phenomena are linked, however, remains unclear. Using a cortico-hippocampal network-on-a-chip, we find that the glucocorticoid receptor agonist dexamethasone (DXM) stimulates the cyclin-dependent kinase 5 (CDK5) to phosphorylate huntingtin (HTT) at serines 1181 and 1201 (S1181/1201), which retards BDNF vesicular transport in cortical axons. Parallel studies in mice show that CORT induces phosphorylation of these same residues, reduces BDNF levels, and suppresses neurogenesis. The adverse effects of CORT are reduced in mice bearing an unphosphorylatable mutant HTT (HdhS1181A/S1201A). The protective effect of unphosphorylatable HTT, however, disappears if neurogenesis is blocked. The CDK5-HTT pathway, which regulates BDNF transport in the cortico-hippocampal network, thus provides a missing link between elevated CORT levels and suppressed neurogenesis.


Asunto(s)
Envejecimiento/metabolismo , Corticosterona/metabolismo , Hipocampo/metabolismo , Proteína Huntingtina/metabolismo , Neurogénesis , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Depresión/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Fosforilación , Transporte de Proteínas
14.
Neuropsychopharmacology ; 45(9): 1545-1556, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417852

RESUMEN

Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes. We administered (R,S)-ketamine or its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) and (2S,6S)-hydroxynorketamine ((2S,6S)-HNK) at various doses 1 week before one of a number of stressors in male and female 129S6/SvEv mice. Patch clamp electrophysiology was used to determine the effect of prophylactic drug administration on glutamatergic activity in CA3. To examine the interaction between ovarian hormones and stress resilience, female mice also underwent ovariectomy (OVX) surgery and a hormone replacement protocol prior to drug administration. (2S,6S)-HNK and (2R,6R)-HNK protected against distinct stress-induced behaviors in both sexes, with (2S,6S)-HNK attenuating learned fear in male mice, and (2R,6R)-HNK preventing stress-induced depressive-like behavior in both sexes. (R,S)-ketamine and (2R,6R)-HNK, but not (2S,6S)-HNK, attenuated large-amplitude AMPAR-mediated bursts in hippocampal CA3. All three compounds reduced N-methyl-D-aspartate receptor (NMDAR)-mediated currents 1 week after administration. Furthermore, ovarian-derived hormones were necessary for and sufficient to restore (R,S)-ketamine- and (2R,6R)-HNK-mediated prophylaxis in female mice. Our data provide further evidence that resilience-enhancing prophylactics may alter AMPAR-mediated glutamatergic transmission in CA3. Moreover, we show that prophylactics against stress-induced depressive-like behavior can be developed in a sex-specific manner and demonstrate that ovarian hormones are necessary for the prophylactic efficacy of (R,S)-ketamine and (2R,6R)-HNK in female mice.


Asunto(s)
Ketamina , Animales , Fenómenos Electrofisiológicos , Femenino , Hipocampo/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacología , Masculino , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Pharmacol Biochem Behav ; 192: 172913, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201299

RESUMEN

At sub-anaesthetic doses, ketamine, a non competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has demonstrated remarkable and rapid antidepressant (AD) efficacy in patients with treatment-resistant depression (TRD). However, its mechanism of action of ketamine is not fully understood. Since comorbid depression and anxiety disorders often occur, GABAergic/inhibitory and glutamatergic/excitatory drug treatments may be co-administered in these patients. Information regarding this combination is critical to establish efficacy or treatment restrictions to maximize translation from animal models to TRD patients, effectiveness and safety. To assess the specific role of excitatory/inhibitory neurotransmission in the medial prefrontal cortex-raphe nuclei (mPFC-DRN) circuit in the sustained antidepressant-like activity (AD) of ketamine (at t24h post dose), AMPA-R antagonist (intra-DRN) and GABAA-R agonist (intra-mPFC) were co-administered with ketamine (intra-mPFC). Twenty-four hours later, responses in the forced swim test (FST) and neurochemical consequences on extracellular mPFC glutamate, GABA and 5-HT levels were measured in BALB/cJ mice. Intra-DRN NBQX prevented the sustained AD-like activity of ketamine evidenced by decreases in FST swimming duration and blunted cortical 5-HText and Gluext. Intra-mPFC muscimol blocked ketamine AD-like activity and its effects on cortical 5-HText. Moreover, a selective glutamate transporter GLT-1 inhibitor, dihydrokainic acid (DHK) locally perfused into the mPFC produced an AD-like activity at t24h associated with robust increases in mPFC 5-HText, Gluext and GABAext. Thus, the sustained AD-like activity of ketamine is triggered by AMPA-R activation in the DRN and 5-HT - glutamate release in the mPFC, but limited by GABAA-R activation - GABA release in the mPFC. The local blockade of GLT-1 in the mPFC also mimics the rapid responses of ketamine, thus highlighting the role of neuronal-glial adaptation in these effects. These results also suggests the need to test for the concomitant prescription of ketamine and BZD to see whether its sustained antidepressant activity is maintained in TRD patients.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Núcleo Dorsal del Rafe/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ketamina/administración & dosificación , Neuroglía/metabolismo , Corteza Prefrontal/metabolismo , Receptores AMPA/metabolismo , Receptores de GABA-A/metabolismo , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Benzodiazepinas/administración & dosificación , Benzodiazepinas/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Agonistas de Receptores de GABA-A/administración & dosificación , Agonistas de Receptores de GABA-A/farmacología , Ácido Kaínico/administración & dosificación , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Microdiálisis , Neuroglía/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Quinoxalinas/administración & dosificación , Quinoxalinas/farmacología , Receptores AMPA/antagonistas & inhibidores , Resultado del Tratamiento
16.
Psychiatry Clin Neurosci ; 74(2): 112-117, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31599111

RESUMEN

AIM: Tryptophan is the sole precursor of both peripherally and centrally produced serotonin and kynurenine. In depressed patients, tryptophan, serotonin, kynurenine, and their metabolite levels remain unclear. Therefore, peripheral tryptophan and metabolites of serotonin and kynurenine were investigated extensively in 173 patients suffering from a current major depressive episode (MDE) and compared to 214 healthy controls (HC). METHODS: Fasting plasma levels of 11 peripheral metabolites were quantified: tryptophan, serotonin pathway (serotonin, its precursor 5-hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid), and kynurenine pathway (kynurenine and six of its metabolites: anthranilic acid, kynurenic acid, nicotinamide, picolinic acid, xanthurenic acid, and 3-hydroxyanthranilic acid). RESULTS: Sixty (34.7%) patients were antidepressant-drug free. Tryptophan levels did not differ between MDE patients and HC. Serotonin and its precursor (5-hydroxytryptophan) levels were lower in MDE patients than in HC, whereas, its metabolite (5-hydroxyindoleacetic acid) levels were within the standard range. Kynurenine and four of its metabolites (kynurenic acid, nicotinamide, picolinic acid, and xanthurenic acid) were lower in MDE patients. CONCLUSION: Whilst the results of this study demonstrate an association between the metabolites studied and depression, conclusions about causality cannot be made. This study uses the largest ever sample of MDE patients, with an extensive assessment of peripheral tryptophan metabolism in plasma. These findings provide new insights into the peripheral signature of MDE. The reasons for these changes should be further investigated. These results might suggest new antidepressant therapeutic strategies.


Asunto(s)
Trastorno Depresivo Mayor/sangre , Quinurenina/sangre , Serotonina/sangre , Triptófano/sangre , Ácido 3-Hidroxiantranílico/metabolismo , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Niacinamida/sangre , Ácidos Picolínicos/sangre , Xanturenatos/sangre
17.
Biol Psychiatry ; 87(6): 514-525, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31623825

RESUMEN

BACKGROUND: Activation of serotonin (5-HT) type 4 receptors (5-HT4Rs) has been shown to have anxiolytic effects in a variety of animal models. Characterizing the circuits responsible for these effects should offer insights into new approaches to treat anxiety. METHODS: We evaluated whether acute 5-HT4R activation in glutamatergic axon terminals arising from the medial prefrontal cortex (mPFC) to the dorsal raphe nucleus (DRN) induced fast anxiolytic effects. Anxiolytic effects of an acute systemic administration (1.5 mg/kg, intraperitoneally) or intra-mPFC infusion with the 5-HT4R agonist, RS67333 (0.5 µg/side), were examined in mice. To provide evidence that anxiolytic effects of RS67333 recruited an mPFC-DRN neural circuit, in vivo recordings of firing rate of DRN 5-HT neurons, cerebral 5-HT depletion, and optogenetic activation and silencing were performed. RESULTS: Acute systemic administration and intra-mPFC infusion of RS67333 produced fast anxiolytic effects and increased DRN 5-HT cell firing. Serotonin depletion prevented anxiolytic effects induced by mPFC infusion of RS67333. Surprisingly the anxiolytic effects of mPFC infusion diazepam (1.5 µg/side) were also blocked by 5-HT depletion. Optogenetically activating mPFC terminals targeting the DRN reduced anxiety, whereas silencing this circuit blocked RS67333 and diazepam mPFC infusion-induced anxiolytic effects. Finally, anxiolytic effects induced by an acute systemic RS67333 or diazepam administration were partially blocked after optogenetically inhibiting cortical glutamatergic terminals in the DRN. CONCLUSIONS: Our findings suggest that activating 5-HT4R acutely in the mPFC or targeting mPFC pyramidal cell terminals in the DRN might constitute a strategy to produce a fast anxiolytic response.


Asunto(s)
Ansiolíticos , Núcleo Dorsal del Rafe , Compuestos de Anilina , Animales , Ansiolíticos/farmacología , Benzodiazepinas , Diazepam/farmacología , Ratones , Piperidinas , Corteza Prefrontal , Serotonina
18.
Neuropsychopharmacology ; 45(3): 542-552, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600767

RESUMEN

Enhancing stress resilience could protect against stress-induced psychiatric disorders in at-risk populations. We and others have previously reported that (R,S)-ketamine acts as a prophylactic against stress when administered 1 week before stress. While we have shown that the selective 5-hydroxytryptamine (5-HT) (serotonin) reuptake inhibitor (SSRI) fluoxetine (Flx) is ineffective as a prophylactic, we hypothesized that other serotonergic compounds such as serotonin 4 receptor (5-HT4R) agonists could act as prophylactics. We tested if three 5-HT4R agonists with varying affinity could protect against stress in two mouse strains by utilizing chronic corticosterone (CORT) administration or contextual fear conditioning (CFC). Mice were administered saline, (R,S)-ketamine, Flx, RS-67,333, prucalopride, or PF-04995274 at varying doses, and then 1 week later were subjected to chronic CORT or CFC. In C57BL/6N mice, chronic Flx administration attenuated CORT-induced weight changes and increased open-arm entries in the elevated plus maze (EPM). Chronic RS-67,333 administration attenuated CORT-mediated weight changes and protected against depressive- and anxiety-like behavior. In 129S6/SvEv mice, RS-67,333 attenuated learned fear in male, but not female mice. RS-67,333 was ineffective against stress-induced depressive-like behavior in the forced swim test (FST), but prevented anxiety-like behavior in both sexes. Prucalopride and PF-04995274 attenuated learned fear and decreased stress-induced depressive-like behavior. Electrophysiological recordings following (R,S)-ketamine or prucalopride administration revealed that both drugs alter AMPA receptor-mediated synaptic transmission in CA3. These data show that in addition to (R,S)-ketamine, 5-HT4R agonists are also effective prophylactics against stress, suggesting that the 5-HT4R may be a novel target for prophylactic drug development.


Asunto(s)
Profilaxis Pre-Exposición/métodos , Agonistas del Receptor de Serotonina 5-HT4/administración & dosificación , Estrés Psicológico/prevención & control , Estrés Psicológico/psicología , Compuestos de Anilina/administración & dosificación , Animales , Corticosterona/toxicidad , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Piperidinas/administración & dosificación , Receptores de Serotonina 5-HT4/fisiología , Estrés Psicológico/inducido químicamente , Resultado del Tratamiento
19.
J Affect Disord ; 254: 122-123, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598189

RESUMEN

BACKGROUND: The underlying mechanism involved in dapsone-induced mania remains unknown. METHODS: We report the case of a 54-year-old man with a dapsone-induced mania. RESULTS: The maximum of manic symptoms was correlated with the maximum of methemoglobinemia and mania decreased concomitantly with the methemoglobinemia level. LIMITATIONS: This is a single case. CONCLUSIONS: This case shows that dapsone-induced mania severity is correlated with methemoglobinemia level, leading for the first time to the hypothesis of a physiopathological mechanism by which dapsone could induce mania.


Asunto(s)
Trastorno Bipolar/inducido químicamente , Dapsona/efectos adversos , Metahemoglobinemia/sangre , Biomarcadores , Humanos , Masculino , Persona de Mediana Edad
20.
Nat Commun ; 9(1): 4272, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323233

RESUMEN

Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington's disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD. We demonstrate that defects in the brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway contribute to the deregulated AMPAR trafficking by reducing the interaction between transmembrane AMPA receptor regulatory proteins (TARPs) and the PDZ-domain scaffold protein PSD95. The disturbed AMPAR surface diffusion is rescued by the antidepressant drug tianeptine via the BDNF signaling pathway. Tianeptine also restores the impaired LTP and hippocampus-dependent memory in different HD mouse models. These findings unravel a mechanism underlying hippocampal synaptic and memory dysfunction in HD, and highlight AMPAR surface diffusion as a promising therapeutic target.


Asunto(s)
Hipocampo/fisiopatología , Enfermedad de Huntington/fisiopatología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Difusión , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tiazepinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...