Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(11): e0249894, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793446

RESUMEN

Inactivation of the tumor suppressor p53 (encoded by the Trp53 gene) is relevant for development and growth of different cancers, including osteosarcoma, a primary bone tumor mostly affecting children and young adolescents. We have previously shown that deficiency of the ribosomal S6 kinase 2 (Rsk2) limits osteosarcoma growth in a transgenic mouse model overexpressing the proto-oncogene c-Fos. Our initial aim for the present study was to address the question, if Rsk2 deficiency would also influence osteosarcoma growth in another mouse model. For that purpose, we took advantage of Trp53fl/fl mice, which were crossed with Runx2Cre transgenic mice in order to inactivate p53 specifically in osteoblast lineage cells. However, since we unexpectedly identified Runx2Cre-mediated recombination also in the thymus, the majority of 6-month-old Trp53fl/fl;Runx2-Cre (thereafter termed Trp53Cre) animals displayed thymic lymphomas, similar to what has been described for Trp53-deficient mice. Since we did not detect osteosarcoma formation at that age, we could not follow our initial aim, but we studied the skeletal phenotype of Trp53Cre mice, with or without additional Rsk2 deficiency. Here we unexpectedly observed that Trp53Cre mice display a unique accumulation of trabecular bone in the midshaft region of the femur and the humerus, consistent with its previously established role as a negative regulator of osteoblastogenesis. Since this local bone mass increase in Trp53Cre mice was significantly reduced by Rsk2 deficiency, we isolated bone marrow cells from the different groups of mice and analyzed their behavior ex vivo. Here we observed a remarkable increase of colony formation, osteogenic differentiation and proliferation in Trp53Cre cultures, which was unaffected by Rsk2 deficiency. Our data thereby confirm a critical and tumorigenesis-independent function of p53 as a key regulator of mesenchymal cell differentiation.


Asunto(s)
Neoplasias Óseas/metabolismo , Huesos/patología , Linfoma/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Neoplasias del Timo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Huesos/metabolismo , Hueso Esponjoso/patología , Carcinogénesis/genética , Proliferación Celular , Linfoma/genética , Linfoma/patología , Ratones , Ratones Noqueados , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Neoplasias del Timo/genética , Neoplasias del Timo/patología , Proteína p53 Supresora de Tumor/genética
2.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236045

RESUMEN

The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinogénesis , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Genes jun/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética , Factor de Transcripción AP-1/metabolismo
3.
Clin Oral Investig ; 25(2): 593-601, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32803442

RESUMEN

OBJECTIVES: The transcription factor c-Fos controls the differentiation of osteoclasts and is expressed in periodontal ligament cells after mechanical stimulation in vitro. However, it is unclear how c-Fos regulates orthodontic tooth movement (OTM) in vivo. The aim of this study was therefore to analyse OTM in transgenic mice with overexpression of c-Fos. MATERIALS AND METHODS: We employed c-Fos transgenic mice (c-Fos tg) and wild-type littermates (WT) in a model of OTM induced by Nitinol tension springs that were bonded between the left first maxillary molars and the upper incisors. The unstimulated contralateral side served as an internal control. Mice were analysed by contact radiography, micro-computed tomography, decalcified histology and histochemistry. RESULTS: Our analysis of the unstimulated side revealed that alveolar bone and root morphology were similar between c-Fos tg and control mice. However, we observed more osteoclasts in the alveolar bone of c-Fos tg mice as tartrate-resistant acid phosphatase (TRAP)-positive cells were increased by 40%. After 12 days of OTM, c-Fos tg mice exhibited 62% increased tooth movement as compared with WT mice. Despite the faster tooth movement, c-Fos tg and WT mice displayed the same amount of root resorption. Importantly, we did not observe orthodontically induced tissue necrosis (i.e. hyalinization) in c-Fos tg mice, while this was a common finding in WT mice. CONCLUSION: Overexpression of c-Fos accelerates tooth movement without causing more root resorption. CLINICAL RELEVANCE: Accelerated tooth movement must not result in more root resorption as higher tissue turnover may decrease the amount of mechanically induced tissue necrosis.


Asunto(s)
Resorción Radicular , Técnicas de Movimiento Dental , Animales , Ratones , Ratones Transgénicos , Osteoclastos , Microtomografía por Rayos X
4.
J Bone Miner Res ; 35(9): 1726-1737, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32369212

RESUMEN

Since a key function of Wnt1 in brain development was established early on through the generation of non-viable Wnt1-deficient mice, it was initially surprising that WNT1 mutations were found to cause either early-onset osteoporosis (EOOP) or osteogenesis imperfecta type XV (OI-XV). The deduced function of Wnt1 as an osteoanabolic factor has been confirmed in various mouse models with bone-specific inactivation or overexpression, but mice carrying disease-causing Wnt1 mutations have not yet been described. Triggered by the clinical analysis of EOOP patients carrying a heterozygous WNT1 mutation (p.R235W), we introduced this mutation into the murine Wnt1 gene to address the question of whether this would cause a skeletal phenotype. We observed that Wnt1+/R235W and Wnt1R235W/R235W mice were born at the expected Mendelian ratio and that they did not display postnatal lethality or obvious nonskeletal phenotypes. At 12 weeks of age, the homozygous presence of the Wnt1 mutation was associated with reduced trabecular and cortical bone mass, explained by a lower bone formation rate compared with wild-type littermates. At 52 weeks of age, we also observed a moderate bone mass reduction in heterozygous Wnt1+/R235W mice, thereby underscoring their value as a model of WNT1-dependent EOOP. Importantly, when we treated wild-type and Wnt1+/R235W mice by daily injection of parathyroid hormone (PTH), we detected the same osteoanabolic influence in both groups, together with an increased cortical thickness in the mutant mice. Our data demonstrate the pathogenicity of the WNT1-R235W mutation, confirm that controlling skeletal integrity is the primary physiological function of Wnt1, and suggest that osteoanabolic treatment with teriparatide should be applicable for individuals with WNT1-dependent EOOP. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Mutación , Animales , Huesos , Ratones , Mutación/genética , Osteogénesis Imperfecta/genética , Fenotipo , Proteína Wnt1/genética
5.
ACR Open Rheumatol ; 1(6): 382-393, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31777818

RESUMEN

OBJECTIVE: The association between inflammation and dysregulated bone remodeling is apparent in rheumatoid arthritis and is recapitulated in the human tumor necrosis factor transgenic (hTNFtg) mouse model. We investigated whether extracellular binding immunoglobulin protein (BiP) would protect the hTNFtg mouse from both inflammatory arthritis as well as extensive systemic bone loss and whether BiP had direct antiosteoclast properties in vitro. METHODS: hTNFtg mice received a single intraperitoneal administration of BiP at onset of arthritis. Clinical disease parameters were measured weekly. Bone analysis was performed by microcomputed tomography and histomorphometry. Mouse bone marrow macrophage and human peripheral blood monocyte precursors were used to study the direct effect of BiP on osteoclast differentiation and function in vitro. Monocyte and osteoclast signaling was analyzed by Western blotting, flow cytometry, and imaging flow cytometry. RESULTS: BiP-treated mice showed reduced inflammation and cartilage destruction, and histomorphometric analysis revealed a decrease in osteoclast number with protection from systemic bone loss. Abrogation of osteoclast function was also observed in an ex vivo murine calvarial model. BiP inhibited differentiation of osteoclast precursors and prevented bone resorption by mature osteoclasts in vitro. BiP also induced downregulation of CD115/c-Fms and Receptor Activator of NF-κB (RANK) messenger RNA and protein, causing reduced phosphorylation of the p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1/2 and p38, with suppression of essential osteoclast transcription factors, c-Fos and NFATc1. BiP directly inhibited TNF-α- or Receptor Activator of NF-κB Ligand (RANKL)-induced NF-κB nuclear translocation in THP-1 monocytic cells and preosteoclasts by the canonical and noncanonical pathways. CONCLUSION: BiP combines an anti-inflammatory function with antiosteoclast activity, which establishes it as a potential novel therapeutic for inflammatory disorders associated with bone loss.

6.
Cell Signal ; 63: 109362, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344438

RESUMEN

P90 ribosomal S6 kinases (RSK) are ubiquitously expressed and regulate responses to neurohumoral stimulation. To study the role of RSK signalling on cardiac myocyte function and protein phosphorylation, pharmacological RSK inhibitors were tested. Here, the ATP competitive N-terminal kinase domain-targeting compounds D1870 and SL0101 and the allosteric C-terminal kinase domain-targeting FMK were evaluated regarding their ability to modulate cardiac myocyte protein phosphorylation. Exposure to D1870 and SL0101 significantly enhanced phospholamban (PLN) Ser16 and cardiac troponin I (cTnI) Ser22/23 phosphorylation in response to D1870 and SL0101 upon exposure to phenylephrine (PE) that activates RSK. In contrast, FMK pretreatment significantly reduced phosphorylation of both proteins in response to PE. D1870-mediated enhancement of PLN Ser16 phosphorylation was also observed after exposure to isoprenaline or noradrenaline (NA) stimuli that do not activate RSK. Inhibition of ß-adrenoceptors by atenolol or cAMP-dependent protein kinase (PKA) by H89 prevented the D1870-mediated increase in PLN phosphorylation, suggesting that PKA is the kinase responsible for the observed phosphorylation. Assessment of changes in cAMP formation by FRET measurements revealed increased cAMP formation in vicinity to PLN after exposure to D1870 and SL0101. D1870 inhibited phosphodiesterase activity similarly as established PDE inhibitors rolipram or 3-isobutyl-1-methylxanthine. Assessment of catecholamine-mediated force development in rat ventricular muscle strips revealed significantly reduced EC50 for NA after D1870 pretreatment (DMSO/NA: 2.33 µmol/L vs. D1870/NA: 1.30 µmol/L). The data reveal enhanced cardiac protein phosphorylation by D1870 and SL0101 that was not detectable in response to FMK. This disparate effect might be attributed to off-target inhibition of PDEs with impact on muscle function as demonstrated for D1870.


Asunto(s)
Benzopiranos/farmacología , Monosacáridos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pteridinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Miocitos Cardíacos/citología , Fosforilación , Ratas , Ratas Wistar , Troponina I/metabolismo
7.
Front Immunol ; 10: 1183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214168

RESUMEN

Bone marrow plasma cells have been reported to represent a major source of IL-10; however, the impact of plasma cell derived IL-10 in that tissue remains poorly understood. We confirm in this study that even in the absence of acute immune reactions, mature plasma cells represent the dominant IL-10+ cell population in the bone marrow, and identify myeloid-lineage cells as a main local target for plasma cell derived IL-10. Using Vert-X IL-10 transcriptional reporter mice, we found that more than 50% of all IL-10+ cells in bone marrow were CD138+ plasma cells, while other IL-10+ B lineage cells were nearly absent in this organ. Accordingly, IL-10 was found in the supernatants of short-term cultures of FACS-sorted bone marrow plasma cells, confirming IL-10 secretion from these cells. IL-10+ bone marrow plasma cells showed a B220-/CD19-/MHCII low phenotype suggesting that these cells represent a mature differentiation stage. Approximately 5% of bone marrow leucocytes expressed the IL-10 receptor (IL-10R), most of them being CD115+/Ly6C+/CD11c- monocytes. Compared to littermate controls, young B lineage specific IL-10 KO mice showed increased numbers of CD115+ cells but normal populations of other myeloid cell types in bone marrow. However, at 7 months of age B lineage specific IL-10 KO mice exhibited increased populations of CD115+ myeloid and CD11c+ dendritic cells (DCs), and showed reduced F4/80 expression in this tissue; hence, indicating that bone marrow plasma cells modulate the differentiation of local myeloid lineage cells via IL-10, and that this effect increases with age. The effects of B cell/plasma cell derived IL-10 on the differentiation of CD115+, CD11c+, and F4/80+ myeloid cells were confirmed in co-culture experiments. Together, these data support the idea that IL-10 production is not limited to early plasma cell stages in peripheral tissues but is also an important feature of mature plasma cells in the bone marrow. Moreover, we provide evidence that already under homeostatic conditions in the absence of acute immune reactions, bone marrow plasma cells represent a non-redundant source for IL-10 that modulates local myeloid lineage differentiation. This is particularly relevant in older individuals.


Asunto(s)
Linfocitos B/fisiología , Células de la Médula Ósea/fisiología , Células Dendríticas/inmunología , Interleucina-10/metabolismo , Células Mieloides/fisiología , Células Plasmáticas/fisiología , Animales , Antígenos CD19/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Hematopoyesis , Interleucina-10/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
8.
Sci Transl Med ; 10(466)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404864

RESUMEN

WNT1 mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygous WNT1 mutations in patients with early-onset osteoporosis. We show that inactivation of Wnt1 in osteoblasts causes severe osteoporosis and spontaneous bone fractures in mice. In contrast, conditional Wnt1 expression in osteoblasts promoted rapid bone mass increase in developing young, adult, and aged mice by rapidly increasing osteoblast numbers and function. Contrary to current mechanistic models, loss of Lrp5, the co-receptor thought to transmit extracellular WNT signals during bone mass regulation, did not reduce the bone-anabolic effect of Wnt1, providing direct evidence that Wnt1 function does not require the LRP5 co-receptor. The identification of Wnt1 as a regulator of bone formation and remodeling provides the basis for development of Wnt1-targeting drugs for the treatment of osteoporosis.


Asunto(s)
Anabolizantes/metabolismo , Huesos/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína Wnt1/metabolismo , Envejecimiento/patología , Animales , Remodelación Ósea , Huesos/fisiopatología , Diferenciación Celular , Hueso Cortical/patología , Fracturas Óseas/epidemiología , Fracturas Óseas/fisiopatología , Humanos , Incidencia , Ligandos , Ratones Transgénicos , Mutación/genética , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteogénesis , Transgenes , Proteína Wnt1/genética
9.
Biochem Biophys Res Commun ; 497(2): 659-666, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29454962

RESUMEN

Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using µCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.


Asunto(s)
Remodelación Ósea , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Megacariocitos/citología , Mutación Puntual , Animales , Densidad Ósea , Recuento de Células , Femenino , Ratones , Ratones Endogámicos C57BL , Receptores de Trombopoyetina/genética
10.
Cell Death Differ ; 24(4): 672-682, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28106886

RESUMEN

During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte-osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.


Asunto(s)
Comunicación Celular/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL10/metabolismo , Femenino , Fémur/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/citología , Osteoclastos/metabolismo , Osteocitos/citología , Osteocitos/metabolismo , Osteogénesis , Osteoporosis/etiología , Osteoporosis/metabolismo , Osteoporosis/patología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
11.
Arthritis Rheumatol ; 68(1): 138-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26361381

RESUMEN

OBJECTIVE: To determine whether overexpression of the activator protein 1 (AP-1) transcription factor Fra-1 in adipose-derived stromal cells (ADSCs) is an effective treatment of collagenase-induced osteoarthritis (OA). METHODS: OA was induced by injection of collagenase into the knee joints of male C57BL/6 mice. ADSCs were isolated from the inguinal fat pads of 8-week-old wild-type or Fra-1-transgenic mice and injected into the knee joints of mice with collagenase-induced OA 7 days after OA induction. Histologic analyses of cartilage destruction and chondrocyte cell death were performed. Adipogenic differentiation capacity was evaluated, gene expression was analyzed, and cytokine profiling was performed in stromal vascular fractions (SVFs) and ADSCs. RESULTS: OA-related cartilage destruction and chondrocyte cell death were significantly reduced in mouse knee joints treated with ADSCs from Fra-1-transgenic mice compared to mouse knee joints treated with ADSCs from wild-type mice. This effect did not result from the higher number of adipogenic progenitors observed in SVFs from Fra-1-transgenic compared to wild-type mouse fat pads, since injection of wild-type mouse ADSCs enriched for adipogenic progenitors did not show any additional chondroprotective effects compared to nonsorted ADSCs. However, Fra-1-transgenic mouse ADSCs showed decreased adipogenic differentiation capacity. Moreover, Fra-1 significantly inhibited proinflammatory interleukin-6 and pentraxin 3 expression, while increasing the expression of extracellular matrix proteins, such as periostin and spondin 1. These findings suggest that Fra-1 overexpression leads to an increased chondroprotective effect of ADSCs in OA. CONCLUSION: ADSCs overexpressing Fra-1 effectively protect against OA. Our data indicate that genetic modifications of ADSCs, such as Fra-1 overexpression, may improve their potential to protect articular cartilage against OA-mediated damage.


Asunto(s)
Artritis Experimental/genética , Artritis Experimental/prevención & control , Osteoartritis/genética , Proteínas Proto-Oncogénicas c-fos/genética , Rodilla de Cuadrúpedos/metabolismo , Células del Estroma/metabolismo , Adipogénesis/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Proteína C-Reactiva/inmunología , Proteína C-Reactiva/metabolismo , Cartílago Articular , Diferenciación Celular , Condrocitos/metabolismo , Colagenasas , Citocinas/inmunología , Perfilación de la Expresión Génica , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Osteoartritis/inmunología , Osteoartritis/metabolismo , Proteínas Proto-Oncogénicas c-fos/inmunología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Rodilla de Cuadrúpedos/patología , Células del Estroma/citología , Células del Estroma/inmunología
12.
Ann Rheum Dis ; 75(2): 413-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25414238

RESUMEN

OBJECTIVE: Arthritis is a chronic inflammatory disease characterised by immune cell infiltration and mesenchymal cell expansion in the joints. Although the role of immune cells in arthritis is well characterised, the development of mesenchymal cell hyperplasia needs to be better defined. Here, we analysed the role of the ribosomal S6 kinase Rsk2, which we found to be highly activated in joints of patients with arthritis, in the development of mesenchymal cell hyperplasia. METHODS: We genetically inactivated Rsk2 in the tumour necrosis factor (TNF)-α transgenic (TNFtg) mice, an animal model for human inflammatory arthritis. Clinical and histological signs of arthritis as well as molecular markers of inflammation and joint destruction were quantified. Fibroblast-like synoviocytes (FLS) were characterised in vitro and the effect of Rsk2 deletion on the pattern of gene expression was determined. RESULTS: Rsk2 deficiency in TNFtg mice results in earlier and exacerbated inflammation as well as increased bone and cartilage destruction. The production of inflammatory cytokines, matrix metalloproteinases and osteoclastogenic molecules was significantly increased in vivo upon Rsk2 inactivation. Bone marrow deficient in Rsk2 could not transfer this phenotype, indicating that Rsk2 expression in mesenchymal cells controls the course of arthritis. Indeed, Rsk2 deficiency was associated with a more activated phenotype and higher proliferative capacity of FLS, thereby increasing cytokines and production of matrix proteinases. CONCLUSIONS: Rsk2 emerges as a key regulator of mesenchymal cell numbers in the joint and thereby could be targeted to control the inflammatory and tissue-destructive feature of joints in arthritis.


Asunto(s)
Artritis Experimental/patología , Fibroblastos/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Membrana Sinovial/patología , Animales , Artritis Experimental/metabolismo , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Hiperplasia/genética , Hiperplasia/metabolismo , Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/genética
14.
Nat Commun ; 6: 7796, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26183376

RESUMEN

Acute lung injury (ALI) is a severe inflammatory disease for which no specific treatment exists. As glucocorticoids have potent immunosuppressive effects, their application in ALI is currently being tested in clinical trials. However, the benefits of this type of regimen remain unclear. Here we identify a mechanism of glucocorticoid action that challenges the long-standing dogma of cytokine repression by the glucocorticoid receptor. Contrarily, synergistic gene induction of sphingosine kinase 1 (SphK1) by glucocorticoids and pro-inflammatory stimuli via the glucocorticoid receptor in macrophages increases circulating sphingosine 1-phosphate levels, which proves essential for the inhibition of inflammation. Chemical or genetic inhibition of SphK1 abrogates the therapeutic effects of glucocorticoids. Inflammatory p38 MAPK- and mitogen- and stress-activated protein kinase 1 (MSK1)-dependent pathways cooperate with glucocorticoids to upregulate SphK1 expression. Our findings support a critical role for SphK1 induction in the suppression of lung inflammation by glucocorticoids, and therefore provide rationales for effective anti-inflammatory therapies.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Glucocorticoides/farmacología , Macrófagos/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos de los fármacos , Receptores de Glucocorticoides/agonistas , Animales , Inmunoprecipitación de Cromatina , Citocinas/efectos de los fármacos , Citocinas/inmunología , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación , Lisofosfolípidos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
15.
Cell Metab ; 21(3): 493-501, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25738463

RESUMEN

Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.


Asunto(s)
Antiinfecciosos/farmacología , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/metabolismo , Macrófagos/metabolismo , Piel/metabolismo , Sodio/metabolismo , Animales , Activación Enzimática/fisiología , Humanos , Leishmania major/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Piel/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Exp Med ; 211(11): 2199-212, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25288397

RESUMEN

The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell-specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression.


Asunto(s)
Linfocitos B/citología , Linfocitos B/metabolismo , Diferenciación Celular/genética , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Apoptosis/genética , Apoptosis/inmunología , Linfocitos B/inmunología , Linfocitos B/ultraestructura , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Inmunidad Humoral , Inmunomodulación , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Células Plasmáticas/inmunología , Células Plasmáticas/ultraestructura , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Immunol ; 193(1): 223-33, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899506

RESUMEN

The bone marrow provides niches for early B cell differentiation and long-lived plasma cells. Therefore, it has been hypothesized that perturbing bone homeostasis might impact B cell function and Ab production. This hypothesis is highly relevant for patients receiving long-term treatment with antiresorptive drugs. We therefore analyzed the humoral immune response of mice chronically treated with ibandronate, a commonly used bisphosphonate. We confirmed the increased bone mass caused by inhibition of osteoclast activity and also the strongly reduced bone formation because of decreased osteoblast numbers in response to ibandronate. Thus, bisphosphonate drastically inhibited bone remodeling. When ibandronate was injected into mice after a primary immunization to mimic common antiosteoporotic treatments, the generation of the various B cell populations, the response to booster immunization, and the generation of plasma cells were surprisingly normal. Mice also responded normally to immunization when ibandronate was applied to naive mice. However, there, ibandronate shunted the homing of bone marrow plasma cells. Interestingly, ibandronate reduced the numbers of megakaryocytes, a known component of the bone marrow plasma cell niche. In line with normal Ab responses, increased plasma cell populations associated with increased megakaryocyte numbers were then observed in the spleens of the ibandronate-treated mice. Thus, although inhibition of bone remodeling disturbed the bone marrow plasma cell niche, a compensatory niche may have been created by relocating the megakaryocytes into the spleen, thereby allowing normal B cell responses. Therefore, megakaryocytes may act as a key regulator of plasma cell niche plasticity.


Asunto(s)
Formación de Anticuerpos/efectos de los fármacos , Conservadores de la Densidad Ósea/efectos adversos , Células de la Médula Ósea/inmunología , Remodelación Ósea/efectos de los fármacos , Difosfonatos/efectos adversos , Células Plasmáticas/inmunología , Bazo/inmunología , Animales , Formación de Anticuerpos/inmunología , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/farmacología , Ácido Ibandrónico , Megacariocitos/inmunología , Ratones
18.
Sci Transl Med ; 6(235): 235ra60, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24807557

RESUMEN

Bone resorption is seminal for the physiological remodeling of bone during life. However, this process needs to be strictly controlled; excessive bone resorption results in pathologic bone loss, osteoporosis, and fracture. We describe a control mechanism of bone resorption by the adaptive immune system. CD80/86, a pair of molecules expressed by antigen-presenting cells and involved in T cell costimulation, act as negative regulator for the generation of bone-resorbing osteoclasts. CD80/86-deficient mice were osteopenic because of increased osteoclast differentiation. CD80/86-deficient osteoclasts escaped physiological inhibition by CTLA-4 or regulatory T cells. Mechanistically, engagement of CD80/86 by CTLA-4 induced activation of the enzyme indoleamine 2,3-dioxygenase (IDO) in osteoclast precursors, which degraded tryptophan and promoted apoptosis. Concordantly, IDO-deficient mice also showed an osteopenic bone phenotype with higher numbers of osteoclast precursors and osteoclasts. Also, IDO-deficient mononuclear cells escaped the anti-osteoclastogenic effect of CTLA-4. This molecular mechanism was also present in humans because targeting CD80/86 by abatacept, a CTLA-4-immunoglobulin fusion protein, reduced, whereas blockade of CTLA-4 by ipilimumab antibody enhanced, the frequency of peripheral osteoclast precursors and osteoclastogenesis. In summary, these data show an important role of the adaptive immune system, in particular T cell CD80/86 costimulation molecules, in the physiological regulation of bone resorption and preservation of bone mass, as well as affect the understanding of the function of current and future drugs fostering or blocking the effects of CTLA-4 in humans.


Asunto(s)
Antígeno B7-1/inmunología , Antígeno B7-2/inmunología , Diferenciación Celular/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Osteoclastos/citología , Linfocitos T/inmunología , Triptófano/metabolismo , Animales , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígeno CTLA-4/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ratones , Ratones Noqueados , FN-kappa B/metabolismo
19.
PLoS One ; 9(1): e84818, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24400116

RESUMEN

Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3-/- cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3-/- and MKK6-/- mice by micro-CT analysis. Bone loss was partially inhibited in MKK3-/- as well as MKK6-/- mice, despite normal osteoclastogenesis in MKK6-/- cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation.


Asunto(s)
Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Animales , Resorción Ósea/etiología , Resorción Ósea/genética , Huesos/metabolismo , Huesos/patología , Femenino , Expresión Génica , MAP Quinasa Quinasa 3/deficiencia , MAP Quinasa Quinasa 3/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/deficiencia , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , Ratones , Ratones Noqueados , Ovariectomía
20.
Proc Natl Acad Sci U S A ; 110(26): 10729-34, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754379

RESUMEN

Destruction of bone tissue by osteoclasts represents a severe pathological phenotype during inflammatory arthritis and results in joint pain and bone malformations. Previous studies have established the essential role of cytokines including TNFα and receptor-ligand interactions, such as the receptor activator of nuclear factor-kappa B-receptor activator of nuclear factor-kappa B ligand interaction for osteoclast formation during joint inflammation. Moreover, autoantibodies contribute to joint inflammation in inflammatory arthritis by triggering cellular fragment crystallizable (Fc)γ receptors (FcγR), resulting in the release of proinflammatory cytokines and chemokines essential for recruitment and activation of innate immune effector cells. In contrast, little is known about the expression pattern and function of different FcγRs during osteoclast differentiation. This would allow osteoclasts to directly interact with autoantibody immune complexes, rather than being influenced indirectly via proinflammatory cytokines released upon immune complex binding to other FcγR-expressing innate immune cells. To address this question, we studied FcγR expression and function on osteoclasts during the steady state and during acute joint inflammation in a model of inflammatory arthritis. Our results suggest that osteoclastogenesis is directly influenced by IgG autoantibody binding to select activating FcγRs on immature osteoclasts, resulting in enhanced osteoclast generation and, ultimately, bone destruction.


Asunto(s)
Artritis Experimental/inmunología , Resorción Ósea/patología , Monocitos/inmunología , Osteoclastos/inmunología , Receptores de IgG/inmunología , Animales , Antígenos Ly/metabolismo , Artritis Experimental/patología , Resorción Ósea/inmunología , Diferenciación Celular , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/clasificación , Monocitos/patología , Osteoclastos/patología , Receptores de IgG/deficiencia , Receptores de IgG/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...