Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Biofilms Microbiomes ; 9(1): 30, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270554

RESUMEN

The gut microbiota is now well known to affect the host's immune system. One way of bacterial communication with host cells is via the secretion of vesicles, small membrane structures containing various cargo. Research on vesicles secreted by Gram-positive gut bacteria, their mechanisms of interaction with the host and their immune-modulatory effects are still relatively scarce. Here we characterized the size, protein content, and immune-modulatory effects of extracellular vesicles (EVs) secreted by a newly sequenced Gram-positive human gut symbiont strain - Bifidobacterium longum AO44. We found that B. longum EVs exert anti-inflammatory effects, inducing IL-10 secretion from both splenocytes and dendritic cells (DC)-CD4+ T cells co-cultures. Furthermore, the EVs protein content showed enrichment in ABC transporters, quorum sensing proteins, and extracellular solute-binding proteins, which were previously shown to have a prominent function in the anti-inflammatory effect of other strains of B. longum. This study underlines the importance of bacterial vesicles in facilitating the gut bacterial immune-modulatory effects on the host and sheds light on bacterial vesicles as future therapeutics.


Asunto(s)
Bifidobacterium longum , Vesículas Extracelulares , Humanos , Fagocitosis , Bacterias , Antiinflamatorios/farmacología
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239852

RESUMEN

Extracellular vesicles (EVs) play important roles in (patho)physiological processes by mediating cell communication. Although EVs contain glycans and glycosaminoglycans (GAGs), these biomolecules have been overlooked due to technical challenges in comprehensive glycome analysis coupled with EV isolation. Conventional mass spectrometry (MS)-based methods are restricted to the assessment of N-linked glycans. Therefore, methods to comprehensively analyze all glyco-polymer classes on EVs are urgently needed. In this study, tangential flow filtration-based EV isolation was coupled with glycan node analysis (GNA) as an innovative and robust approach to characterize most major glyco-polymer features of EVs. GNA is a molecularly bottom-up gas chromatography-MS technique that provides unique information that is unobtainable with conventional methods. The results indicate that GNA can identify EV-associated glyco-polymers that would remain undetected with conventional MS methods. Specifically, predictions based on GNA identified a GAG (hyaluronan) with varying abundance on EVs from two different melanoma cell lines. Enzyme-linked immunosorbent assays and enzymatic stripping protocols confirmed the differential abundance of EV-associated hyaluronan. These results lay the framework to explore GNA as a tool to assess major glycan classes on EVs, unveiling the EV glycocode and its biological functions.


Asunto(s)
Vesículas Extracelulares , Melanoma , Humanos , Glicosaminoglicanos/metabolismo , Ácido Hialurónico/metabolismo , Melanoma/diagnóstico , Melanoma/metabolismo , Polisacáridos/metabolismo , Vesículas Extracelulares/metabolismo
3.
J Extracell Vesicles ; 12(2): e12309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732941

RESUMEN

Extracellular vesicles (EVs) are cell-released, heterogenous nanoparticles that play important roles in (patho)physiological processes through intercellular communication. EVs are often depicted as having a single lipid bilayer, but many studies have demonstrated the existence of multilayered EVs. There has been minimal inquiry into differences between unilamellar and multilamellar EVs in terms of biogenesis mechanisms and functional effects. This commentary speculates on potential causes and roles of multilamellar EVs and serves as a call to action for the research community to unravel the complex layers of EVs.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicación Celular , Transporte Biológico
4.
J Extracell Vesicles ; 11(4): e12202, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35362268

RESUMEN

With an exponential increase in extracellular vesicle (EV) studies in the past decade, focus has been placed on standardization of experimental design to ensure inter-study comparisons and validity of conclusions. In the case of in vitro assays, the composition of cell culture media is important to consider for EV studies. In particular, levels of lipoproteins, which are critical components of the interstitial fluid, should be taken into consideration. Results from this study reveal that lipoprotein levels in cell culture medium impact the effects that EVs have on recipient cells. Additionally, evidence of EV binding and fusion to lipoprotein-like structures in plasma is provided. However, it is unclear whether the impact of lipoproteins in cell culture is due to direct interactions with EVs, indirect effects, or a combination of both mechanisms. Taken together, cell culture studies performed in the absence of physiological levels of lipoproteins are unlikely to reflect interactions that occur between EVs and recipient cells in an in vivo environment.


Asunto(s)
Vesículas Extracelulares , Bioensayo , Técnicas de Cultivo de Célula , Vesículas Extracelulares/metabolismo , Pruebas Inmunológicas , Lipoproteínas/metabolismo
5.
Nanomedicine ; 42: 102515, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35074500

RESUMEN

Monocyte-induced endothelial cell inflammation is associated with multiple pathological conditions, and extracellular vesicles (EVs) are essential nanosized components of intercellular communication. EVs derived from endotoxin-stimulated monocytes were previously shown to carry pro-inflammatory proteins and RNAs. The role of glucose transporter-1 (GLUT-1) and glycan features in monocyte-derived EV-induced endothelial cell inflammation remains largely unexplored. This study demonstrates that EVs derived from endotoxin-stimulated monocytes activate inflammatory pathways in endothelial cells, which are partially attributed to GLUT-1. Alterations in glycan features and increased levels of GLUT-1 were observed in EVs derived from endotoxin-stimulated monocytes. Notably, inhibition of EV-associated GLUT-1, through the use of fasentin, suppressed EV-induced inflammatory cytokines in recipient endothelial cells.


Asunto(s)
Vesículas Extracelulares , Transportador de Glucosa de Tipo 1 , Inflamación , Monocitos , Polisacáridos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotoxinas/farmacología , Vesículas Extracelulares/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Monocitos/patología , Polisacáridos/metabolismo
6.
Extracell Vesicle ; 12022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38665624

RESUMEN

Advancements in extracellular vesicle (EV) studies necessitate the development of optimized storage conditions to ensure preservation of physical and biochemical characteristics. In this study, the most common buffer for EV storage (phosphate-buffered saline/PBS) was compared to a cryoprotective 5% sucrose solution. The size distribution and concentration of EVs from two different sources changed to a greater extent after -80 °C storage in PBS compared to the sucrose solution. Additionally, molecular surface protrusions and transmembrane proteins were more prevalent in EVs stored in the sucrose solution compared to those stored in PBS. This study demonstrates, for the first time, that distinct ring-like molecular complexes and cristae-like folded membranous structures are visible upon EV degradation. Taken together, the size, concentration, molecular surface extensions, and transmembrane proteins of EVs varied substantially based on the buffer used for -80 °C storage, suggesting that biocompatible cryoprotectants, such as sucrose, should be considered for EV studies.

7.
J Control Release ; 332: 529-538, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33716094

RESUMEN

The delivery of therapeutics into sites of action by using cargo-delivery platforms potentially minimizes their premature degradation and fast clearance from the bloodstream. Additionally, drug-loaded stimuli-responsive supramolecular assemblies can be produced to respond to the inherent features of tumor microenvironments, such as extracellular acidosis. We report in this framework the use of pH-responsive polymersomes (PSs) manufactured using poly([N-(2-hydroxypropyl)] methacrylamide)35-b-poly[2-(diisopropylamino)ethyl methacrylate]75 as the building unit (PHPMA35-b-PDPA75). The self-assemblies were produced with desired size towards long circulation time and tumor accumulation (hydrodynamic diameter - DH ~ 100 nm), and they could be successfully loaded with 10% w/w DOX (doxorubicin), while maintaining colloidal stability. The DOX loaded amount is presumably mainly burst-released at the acidic microenvironment of tumors thanks to the pH-switchable property of PDPA (pKa ~ 6.8), while reduced drug leakage has been monitored in pH 7.4. Compared to the administration of free DOX, the drug-loaded supramolecular structures greatly enhanced the therapeutic efficacy with effective growth inhibition of EL4 lymphoma tumor model and 100% survival rate in female C57BL/6 black mice over 40 days. The approach also led to reduced cardiotoxic effect. These features highlight the potential application of such nanotechnology-based treatment in a variety of cancer therapies where low local pH is commonly found, and emphasize PHPMA-based nanomedicines as an alternative to PEGylated formulations.


Asunto(s)
Doxorrubicina , Neoplasias , Animales , Cardiotoxicidad , Doxorrubicina/uso terapéutico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
8.
J Colloid Interface Sci ; 590: 238-248, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548607

RESUMEN

HYPOTHESIS: The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL: The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS: This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.

9.
Pharmaceutics ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056912

RESUMEN

Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages. In this study, the effects of miRNAs that are abundant in adipose tissue EVs and other biogenic nanoparticles (BiNPs) were assessed in terms of altering Toll-like receptor 4 (TLR4)-induced cytokines. TLR-4 signaling in macrophages is often triggered by pathogen or damage-induced inflammation and is associated with several diseases. This study demonstrates that miR-451a, which is abundant in adipose tissue BiNPs, suppresses pro-inflammatory cytokines and increases anti-inflammatory cytokines associated with the TLR4 pathway. Therefore, miR-451a may be partially responsible for immunomodulatory effects of adipose tissue-derived BiNPs.

10.
Carbohydr Polym ; 252: 117122, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33183588

RESUMEN

Cellulose can be dissolved in concentrated acidic aqueous solvents forming extremely viscous solutions, and, in some cases, liquid crystalline phases. In this work, the concentrated phosphoric acid aqueous solvent is revisited implementing a set of advanced techniques, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR), and diffusing wave spectroscopy (DWS). Cryo-TEM images confirm that this solvent system is capable to efficiently dissolve cellulose. No cellulose particles, fibrils, or aggregates are visible. Conversely, PTssNMR revealed a dominant CP signal at 25 °C, characteristic of C-H bond reorientation with correlation time longer than 100 ns and/or order parameter above 0.5, which was ascribed to a transient gel-like network or an anisotropic liquid crystalline phase. Increasing the temperature leads to a gradual transition from CP to INEPT-dominant signal and a loss of birefringence in optical microscopy, suggesting an anisotropic-to-isotropic phase transition. Finally, an excellent agreement between optical microrheology and conventional mechanical rheometry was also obtained.

11.
J Nanobiotechnology ; 18(1): 162, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33160390

RESUMEN

BACKGROUND: Cancer cell-derived extracellular vesicles (EVs) have previously been shown to contribute to pre-metastatic niche formation. Specifically, aggressive tumors secrete pro-metastatic EVs that travel in the circulation to distant organs to modulate the microenvironment for future metastatic spread. Previous studies have focused on the interface between pro-metastatic EVs and epithelial/endothelial cells in the pre-metastatic niche. However, EV interactions with circulating components such as low-density lipoprotein (LDL) have been overlooked. RESULTS: This study demonstrates that EVs derived from brain metastases cells (Br-EVs) and corresponding regular cancer cells (Reg-EVs) display different interactions with LDL. Specifically, Br-EVs trigger LDL aggregation, and the presence of LDL accelerates Br-EV uptake by monocytes, which are key components in the brain metastatic niche. CONCLUSIONS: Collectively, these data are the first to demonstrate that pro-metastatic EVs display distinct interactions with LDL, which impacts monocyte internalization of EVs.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Lipoproteínas LDL/metabolismo , Neoplasias Encefálicas/patología , Neoplasias de la Mama , Línea Celular Tumoral , Células Endoteliales , Humanos , Macrófagos , Monocitos , Células THP-1 , Microambiente Tumoral
12.
Ultramicroscopy ; 218: 113085, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32771863

RESUMEN

Modern high-resolution scanning electron microscopes (SEM), equipped with field emission guns (FEGs), designed to operate at low acceleration voltage, have opened new opportunities to study conductive or insulating systems, without conductive coating. Better electron sources, optics, vacuum, and detectors allow high-resolution SEM to serve as a powerful characterization and analytical tool, and provide invaluable information about structure-property relations of nanomaterials and related applications. Slight specimen charging can be exploited to enhance contrast between different materials and phases, with minimum imaging artifacts. Optimization of charging effects and improved micrograph contrast are essential for the study of different-scale features in ceramics, polymers, organic materials, and thermally fixed liquids, including in biological research. The operating SEM parameters can be adjusted to a specific specimen based on prior knowledge of interaction of the electron beam with similar specimens, and the type of information one wishes to acquire. In this work we examined the effect of the acceleration voltage and the use of different detectors on the contrast formation in several types of specimens, focusing on materials formed mainly of carbon and oxygen, with low inherent contrast in the SEM. That includes cryogenic SEM (cryo-SEM) to study emulsions in their native state. We also studied by cryo-SEM carbon nanotubes (CNTs) dispersed in water and dissolved in superacid. HR-SEM at room temperature was performed on CNT films, deposited on glass. We show how micrograph contrast changes with different detectors, at different acceleration voltages. Judicious selection of the SEM operation parameters leads to optimal picture contrast between domains of different composition.


Asunto(s)
Microscopía por Crioelectrón/métodos , Aumento de la Imagen/métodos , Microscopía Electrónica de Rastreo/métodos , Nanotubos de Carbono/ultraestructura , Manejo de Especímenes/métodos , Artefactos , Electroquímica
13.
Small ; 16(10): e1904064, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32067382

RESUMEN

Extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs) have therapeutic effects in inflammatory diseases. However, production of extracellular vesicles (EVs) from ADSCs is costly, inefficient, and time consuming. The anti-inflammatory properties of adipose tissue-derived EVs and other biogenic nanoparticles have not been explored. In this study, biogenic nanoparticles are obtained directly from lipoaspirate, an easily accessible and abundant source of biological material. Compared to ADSC-EVs, lipoaspirate nanoparticles (Lipo-NPs) take less time to process (hours compared to months) and cost less to produce (clinical-grade cell culture facilities are not required). The physicochemical characteristics and anti-inflammatory properties of Lipo-NPs are evaluated and compared to those of patient-matched ADSC-EVs. Moreover, guanabenz loading in Lipo-NPs is evaluated for enhanced anti-inflammatory effects. Apolipoprotein E and glycerolipids are enriched in Lipo-NPs compared to ADSC-EVs. Additionally, the uptake of Lipo-NPs in hepatocytes and macrophages is higher. Lipo-NPs and ADSC-EVs have comparable protective and anti-inflammatory effects. Specifically, Lipo-NPs reduce toll-like receptor 4-induced secretion of inflammatory cytokines in macrophages. Guanabenz-loaded Lipo-NPs further suppress inflammatory pathways, suggesting that this combination therapy can have promising applications for inflammatory diseases.


Asunto(s)
Tejido Adiposo , Vesículas Extracelulares , Inflamación , Nanopartículas , Tejido Adiposo/química , Antiinflamatorios/economía , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo
14.
Gels ; 4(4)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30674863

RESUMEN

The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali. Cryo-TEM reveals that the addition of urea generally reduces the presence of undissolved cellulose fibrils in solution. These results are consistent with PTssNMR data, which show the reduction and in some cases the absence of crystalline portions of cellulose in solution, suggesting a pronounced positive effect of the urea on the dissolution efficiency of cellulose. Both conventional mechanical macrorheology and microrheology (DWS) indicate a significant delay of gelation induced by urea, being absent until ca. 60 °C for a system containing 5 wt % cellulose, while a system without urea gels at a lower temperature. For higher cellulose concentrations, the samples containing urea form gels even at room temperature. It is argued that since urea facilitates cellulose dissolution, the high entanglement of the cellulose chains in solution (above the critical concentration, C*) results in a strong three-dimensional network.

15.
J Biol Chem ; 286(4): 2864-76, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21087932

RESUMEN

Endocrine therapy with tamoxifen (TAM) significantly improves outcomes for patients with estrogen receptor-positive breast cancer. However, intrinsic (de novo) or acquired resistance to TAM occurs in a significant proportion of treated patients. To identify genes involved in resistance to TAM, we introduced full-length cDNA expression library into estrogen receptor-positive MCF7 cells and exposed them to a cytotoxic dose of 4-hydroxytamoxifen (4OHTAM). Four different library inserts were isolated from surviving clones. Re-introduction of the genes individually into naive MCF7 cells made them resistant to 4OHTAM. Cells overexpressing these genes had an increase in acidic autophagic vacuoles induced by 4OHTAM, suggesting their role in autophagy. One of them, prolylcarboxypeptidase (PRCP), was investigated further. Overexpression of PRCP increased cell proliferation, boosted several established markers of autophagy, including expression of LC3-2, sequestration of monodansylcadaverine, and proteolysis of BSA in an ER-α dependent manner, and increased resistance to 4OHTAM. Conversely, knockdown of endogenous PRCP in MCF7 cells increased cell sensitivity to 4OHTAM and at the same time decreased cell proliferation and expression of LC3-2, sequestration of monodansylcadaverine, and proteolysis of BSA. Inhibition of enzymatic activity of PRCP enhanced 4OHTAM-induced cytotoxicity in MCF7 cells. Cells with acquired resistance to 4OHTAM exhibited increased PRCP activity, although inhibition of PRCP prevented development of 4OHTAM resistance in parental MCF7 cells and restored response to 4OHTAM in MCF7 cells with acquired resistance to 4OHTAM. Thus, we have for the first time identified PRCP as a resistance factor for 4OHTAM resistance in estrogen receptor-positive breast cancer cells.


Asunto(s)
Autofagia , Neoplasias de la Mama/enzimología , Carboxipeptidasas/metabolismo , Proliferación Celular , Citotoxinas/farmacología , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Receptores de Estrógenos , Tamoxifeno/análogos & derivados , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carboxipeptidasas/genética , Línea Celular Tumoral , Antagonistas de Estrógenos/farmacología , Femenino , Humanos , Proteínas de Neoplasias/genética , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
16.
Cancer Lett ; 211(2): 189-97, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15219942

RESUMEN

A previously identified set of short cDNA fragments (genetic suppressor elements, GSEs) expressed in human HT1080 cells protects them against several chemotherapeutic drugs. We show here that DNA damaging agent cytosine arabinoside can induce apoptosis in GSE-containing drug-resistant derivatives (M125 cells) of HT1080, suggesting that apoptotic pathways are preserved in M125. We also show that both parental cells and M125 constitutively express Fas ligand and TNF-related apoptosis inducing ligand, thus pre-disposing cells to apoptosis. In both cell lines, induction of apoptosis requires simultaneous treatment with low doses of cycloheximide (CHX) and death ligands, however, drug-resistant M125 are substantially more resistant to this treatment. Expression of survivin and decoy receptor 1 (DcR1) is lower in parental cells and is further decreased by CHX. In resistant M125 cell, both survivin and DcR1 are overexpressed even after CHX treatment, which can explain relative resistance of these cells. Thus, apoptosis remains intact in cells with resistance-inducing GSE, suggesting that apoptosis inhibitors can be targeted by anti-cancer therapy in drug-resistant tumors.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Daño del ADN , Proteínas Asociadas a Microtúbulos/biosíntesis , Receptores del Factor de Necrosis Tumoral/biosíntesis , Antifúngicos/farmacología , Apoptosis , Cicloheximida/farmacología , Resistencia a Antineoplásicos , Fibrosarcoma/patología , Proteínas Ligadas a GPI , Genes Supresores , Humanos , Proteínas Inhibidoras de la Apoptosis , Proteínas de Neoplasias , Miembro 10c de Receptores del Factor de Necrosis Tumoral , Survivin , Células Tumorales Cultivadas , Receptores Señuelo del Factor de Necrosis Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA