Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 62(3): 388-99, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19447094

RESUMEN

Inferior olive neurons regulate plasticity and timing in the cerebellar cortex via the climbing fiber pathway, but direct characterization of the output of this nucleus has remained elusive. We show that single somatic action potentials in olivary neurons are translated into a burst of axonal spikes. The number of spikes in the burst depends on the phase of subthreshold oscillations and, therefore, encodes the state of the olivary network. These bursts can be successfully transmitted to the cerebellar cortex in vivo, having a significant impact on Purkinje cells. They enhance dendritic spikes, modulate the complex spike pattern, and promote short-term and long-term plasticity at parallel fiber synapses in a manner dependent on the number of spikes in the burst. Our results challenge the view that the climbing fiber conveys an all-or-none signal to the cerebellar cortex and help to link learning and timing theories of olivocerebellar function.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Vías Nerviosas/fisiología , Núcleo Olivar/fisiología , Células de Purkinje/fisiología , Animales , Axones/fisiología , Comunicación Celular/fisiología , Vías Nerviosas/citología , Plasticidad Neuronal/fisiología , Núcleo Olivar/citología , Periodicidad , Ratas , Ratas Sprague-Dawley , Umbral Sensorial/fisiología , Transducción de Señal/fisiología
2.
J Neurosci ; 28(30): 7599-609, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18650337

RESUMEN

Activation of the climbing fiber input powerfully excites cerebellar Purkinje cells via hundreds of widespread dendritic synapses, triggering dendritic spikes as well as a characteristic high-frequency burst of somatic spikes known as the complex spike. To investigate the relationship between dendritic spikes and the spikelets within the somatic complex spike, and to evaluate the importance of the dendritic distribution of climbing fiber synapses, we made simultaneous somatic and dendritic patch-clamp recordings from Purkinje cells in cerebellar slices. Injection of large climbing fiber-like synaptic conductances at the soma using dynamic clamp was sufficient to reproduce the complex spike, independently of dendritic spikes, indicating that neither a dendritic synaptic distribution nor dendritic spikes are required. Furthermore, we found that dendritic spikes are not directly linked to spikelets in the complex spike, and that each dendritic spike is associated with only 0.24 +/- 0.09 extra somatic spikelets. Rather, we demonstrate that dendritic spikes regulate the pause in firing that follows the complex spike. Finally, using dual somatic and axonal recording, we show that all spikelets in the complex spike are axonally generated. Thus, complex spike generation proceeds relatively independently of dendritic spikes, reflecting the dual functional role of climbing fiber input: triggering plasticity at dendritic synapses and generating a distinct output signal in the axon. The encoding of dendritic spiking by the post-complex spike pause provides a novel computational function for dendritic spikes, which could serve to link these two roles at the level of the target neurons in the deep cerebellar nuclei.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/citología , Conducción Nerviosa/fisiología , Células de Purkinje/fisiología , Animales , Animales Recién Nacidos , Axones/fisiología , Axones/efectos de la radiación , Calcio/metabolismo , Dendritas/fisiología , Dendritas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Técnicas In Vitro , Modelos Neurológicos , Conducción Nerviosa/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Células de Purkinje/citología , Ratas , Factores de Tiempo
3.
Nat Protoc ; 1(3): 1235-47, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17406407

RESUMEN

The patch-clamp technique allows investigation of the electrical excitability of neurons and the functional properties and densities of ion channels. Most patch-clamp recordings from neurons have been made from the soma, the largest structure of individual neurons, while their dendrites, which form the majority of the surface area and receive most of the synaptic input, have been relatively neglected. This protocol describes techniques for recording from the dendrites of neurons in brain slices under direct visual control. Although the basic technique is similar to that used for somatic patching, we describe refinements and optimizations of slice quality, microscope optics, setup stability and electrode approach that are required for maximizing the success rate for dendritic recordings. Using this approach, all configurations of the patch-clamp technique (cell-attached, inside-out, whole-cell, outside-out and perforated patch) can be achieved, even for relatively distal dendrites, and simultaneous multiple-electrode dendritic recordings are also possible. The protocol--from the beginning of slice preparation to the end of the first successful recording--can be completed in 3 h.


Asunto(s)
Dendritas/fisiología , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...