Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1220, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040868

RESUMEN

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Suelo/química , Microbiología del Suelo , Biodiversidad
3.
Nat Commun ; 14(1): 3516, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316485

RESUMEN

All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.


Asunto(s)
Herbivoria , Microbiota , Biomasa , Nutrientes , Suelo
4.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147282

RESUMEN

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Causalidad , Biomasa
5.
Ecology ; 103(9): e3758, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35581950

RESUMEN

Habitat loss and fragmentation are likely to seriously impact parasites, a less studied but critical component of ecosystems, yet we lack long-term experimental evidence. Parasites structure communities, increase connectivity in food webs, and account for a large proportion of an ecosystem's total biomass. Food web models predict that parasites with multiple obligate hosts are at greater risk of extinction because the local extinction, or reduction in abundance, of any host will result in a life-cycle bottleneck for the parasite. We examine the response of a parasite and its multiple hosts to forest fragmentation over 26 years in the Wog Wog Habitat Fragmentation Experiment in southeastern Australia. The parasite is the nematode Hedruris wogwogensis, its intermediate host is the amphipod, Arcitalitrus sylvaticus, and its definitive host is the skink, Lampropholis guichenoti. In the first decade after fragmentation, nematodes completely disappeared from the matrix (plantation forestry) and all but disappeared from their definitive host (skinks) in fragments, and by the third decade after fragmentation had not appreciably recovered anywhere in the fragmented landscape compared to continuous forest. The low prevalence of the nematode in the fragmented landscape was associated with the low abundance of one or the other host in different decades: low abundance of the intermediate host (amphipod) in the first decade and low abundance of the definitive host (skink) in the third decade. In turn, the low abundance of each host was associated with changes to the abiotic environment over time due largely to the dynamically changing matrix as the plantation trees grew. Our study provides rare long-term experimental evidence of how disturbance can cause local extinction in parasites with life cycles dependent on more than one host species through population bottlenecks at any life stage. Mismatches in the abundance of multiple hosts over time are likely to be common following disturbance, thus causing parasites with complex life cycles to be particularly susceptible to habitat fragmentation and other disturbances. The integrity of food webs, communities, and ecosystems in fragmented landscapes may be more compromised than presently appreciated due to the sensitivity of parasites to habitat fragmentation.


Asunto(s)
Lagartos , Parásitos , Animales , Ecosistema , Interacciones Huésped-Parásitos , Estadios del Ciclo de Vida , Árboles
6.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957674

RESUMEN

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Eutrofización , Nitrógeno , Nutrientes
7.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32786128

RESUMEN

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Asunto(s)
Nitrógeno , Suelo , Animales , Ecosistema , Fertilización , Pradera , Herbivoria , Humanos , Nitrógeno/análisis
8.
Ecology ; 100(1): e02547, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30488947

RESUMEN

Habitat conversion and fragmentation threaten biodiversity and disrupt species interactions. While parasites are recognized as ecologically important, the impacts of fragmentation on parasitism are poorly understood relative to other species interactions. This lack of understanding is in part due to confounding landscape factors that accompany fragmentation. Fragmentation experiments provide the opportunity to fill this knowledge gap by mechanistically testing how fragmentation affects parasitism while controlling landscape factors. In a large-scale, long-term experiment, we asked how fragmentation affects a host-parasite interaction between a skink and a parasitic nematode, which is trophically transmitted via a terrestrial amphipod intermediate host. We expected that previously observed amphipod declines resulting from fragmentation would result in decreased transmission of nematodes to skinks. In agreement, we found that nematodes were absent among skinks in the cleared matrix and that infections in fragments were about one quarter of those in continuous forest. Amphipods found in gut contents of skinks and collected from pitfall traps mirrored this pattern. A structural equation model supported the expectation that fragmentation disrupted this interaction by altering the abundance of amphipods and suggested that other variables are likely also important in mediating this effect. These findings advance understanding of how landscape change affects parasitism.


Asunto(s)
Lagartos , Infecciones por Nematodos , Animales , Australia , Biodiversidad , Ecosistema
9.
Ecology ; 98(3): 807-819, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27987325

RESUMEN

Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.


Asunto(s)
Ecosistema , Animales , Biodiversidad , Escarabajos
10.
Nature ; 537(7618): 93-96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556951

RESUMEN

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Asunto(s)
Biodiversidad , Fertilizantes , Pradera , Plantas/clasificación , Plantas/metabolismo , Biomasa , Alimentos , Luz , Plantas/efectos de la radiación , Poaceae/clasificación , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Poaceae/efectos de la radiación
11.
Nature ; 529(7586): 390-3, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26760203

RESUMEN

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Asunto(s)
Biodiversidad , Pradera , Modelos Biológicos , Plantas/clasificación , Plantas/metabolismo , Conducta Competitiva , Geografía
12.
Sci Adv ; 1(2): e1500052, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26601154

RESUMEN

We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

13.
Nat Commun ; 6: 7710, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26173623

RESUMEN

Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.


Asunto(s)
Biodiversidad , Ecosistema , Alimentos , Pradera , Herbivoria , Especies Introducidas , Plantas , Suelo/química , Animales , Eutrofización , Nitrógeno , Fósforo , Vertebrados
14.
Nat Plants ; 1: 15080, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27250253

RESUMEN

Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+µ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+µ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.

15.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24670649

RESUMEN

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Asunto(s)
Biodiversidad , Eutrofización/efectos de la radiación , Herbivoria/fisiología , Luz , Plantas/metabolismo , Plantas/efectos de la radiación , Poaceae , Clima , Eutrofización/efectos de los fármacos , Geografía , Actividades Humanas , Internacionalidad , Nitrógeno/metabolismo , Nitrógeno/farmacología , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/fisiología , Poaceae/efectos de la radiación , Factores de Tiempo
16.
Nature ; 508(7497): 521-5, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24531763

RESUMEN

Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.


Asunto(s)
Biodiversidad , Eutrofización , Fertilizantes/efectos adversos , Poaceae , Animales , Biomasa , Clima , Eutrofización/efectos de los fármacos , Geografía , Cooperación Internacional , Poaceae/efectos de los fármacos , Poaceae/fisiología , Factores de Tiempo
17.
PLoS One ; 8(2): e54988, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405103

RESUMEN

Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.


Asunto(s)
Biomasa , Ecosistema , Poaceae , Carbono , Clima
18.
Science ; 333(6050): 1750-3, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21940895

RESUMEN

For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters(-2)) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.


Asunto(s)
Biodiversidad , Biomasa , Ecosistema , Plantas , África , Australia , China , Europa (Continente) , Modelos Biológicos , Modelos Estadísticos , América del Norte , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Análisis de Regresión
19.
Science ; 333(6050): 1755-8, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21940897

RESUMEN

Understanding spatial variation in biodiversity along environmental gradients is a central theme in ecology. Differences in species compositional turnover among sites (ß diversity) occurring along gradients are often used to infer variation in the processes structuring communities. Here, we show that sampling alone predicts changes in ß diversity caused simply by changes in the sizes of species pools. For example, forest inventories sampled along latitudinal and elevational gradients show the well-documented pattern that ß diversity is higher in the tropics and at low elevations. However, after correcting for variation in pooled species richness (γ diversity), these differences in ß diversity disappear. Therefore, there is no need to invoke differences in the mechanisms of community assembly in temperate versus tropical systems to explain these global-scale patterns of ß diversity.


Asunto(s)
Altitud , Biodiversidad , Ecosistema , Ambiente , Plantas , Árboles , Clima , Geografía , Modelos Biológicos
20.
Ecol Lett ; 14(3): 274-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21281419

RESUMEN

Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.


Asunto(s)
Especies Introducidas , Magnoliopsida , Densidad de Población , Biota , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...