Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Neuroimmunol Neuroinflamm ; 11(6): e200311, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270144

RESUMEN

BACKGROUND AND OBJECTIVES: Idiopathic/isolated REM sleep behavior disorder (iRBD) has been strongly linked to neurodegenerative synucleinopathies such as Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. However, there have been increasing reports of RBD as a presenting feature of serious and treatable autoimmune syndromes, particularly IGLON5. This study's objective was to investigate the frequency of autoantibodies in a large cohort of participants with iRBD. METHODS: Participants were enrolled in the North American Prodromal Synucleinopathy cohort with polysomnography-confirmed iRBD, free of parkinsonism and dementia. Plasma samples were systematically screened for the autoantibodies IGLON5, DPPX, LGI1, and CASPR2 using plasma IgG cell-based assay. Positive or equivocal results were confirmed by repeat testing, plus tissue-based indirect immunofluorescence assay for IGLON5. RESULTS: Of 339 samples analyzed, 3 participants (0.9%) had confirmed positive IGLON5 autoantibodies in the cell-based assay, which were confirmed by the tissue-based assay. An additional participant was positive for CASPR2 with low titer by cell-based assay only (of lower clinical certainty). These cases exhibited a variety of symptoms including dream enactment, cognitive decline, autonomic dysfunction, and motor symptoms. In 1 IGLON5 case and the CASPR2 case, evolution was suggestive of typical synucleinopathy, suggesting the possibility that findings were incidental. However, 2 participants with IGLON5 died before diagnosis was clinically suspected, with a final clinical picture highly suggestive of autoimmune disease. DISCUSSION: Our finding that nearly 1% of a large iRBD cohort may have a serious but potentially treatable autoantibody syndrome has important clinical implications. In particular, it raises the question of whether autoantibody testing for IGLON-5-IgG should be widely implemented for participants with iRBD, considering the difficulty in diagnosis of autoimmune diseases, their response to treatment, and the potential for rapid disease progression. However, any routine testing protocol will also have to consider costs and potential adverse effects of false-positive findings. TRIAL REGISTRATION INFORMATION: NCT03623672.


Asunto(s)
Autoanticuerpos , Moléculas de Adhesión Celular Neuronal , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/inmunología , Trastorno de la Conducta del Sueño REM/diagnóstico , Masculino , Femenino , Autoanticuerpos/sangre , Anciano , Moléculas de Adhesión Celular Neuronal/inmunología , Persona de Mediana Edad , Estudios de Cohortes
2.
Alzheimers Dement ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031528

RESUMEN

INTRODUCTION: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS: In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS: This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION: Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS: APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.

4.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687811

RESUMEN

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Transcriptoma/genética , Proteómica/métodos , Masculino , Biomarcadores/metabolismo , Metabolómica/métodos , Aprendizaje Automático , Femenino , Progresión de la Enfermedad , Anciano , Modelos Animales de Enfermedad , Multiómica
5.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499535

RESUMEN

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Cuerpos de Lewy/metabolismo
6.
Neurol Genet ; 10(2): e200128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486676

RESUMEN

Objectives: Characterize the presentation, workup, and management of SGCE myoclonus-dystonia, a rare genetic condition, in a patient with atypical presenting symptoms and no family history of movement abnormalities. Methods: A woman with myoclonus and dystonia was identified based on clinical history and physical examination. Workup was conducted to determine the cause of her symptoms, including whole-exome sequencing. Myoclonus-dystonia is associated with more than 100 distinct mutations in MYC/DYT-SGCE that account for only half of the total myoclonus-dystonia patients. As such, this case required intensive genetic analyses rather than screening only for a small subset of well-characterized mutations. Results: Childhood onset myoclonus and worsening dystonia with age were identified in a young woman. She underwent screening for common causes of twitching movements, followed by whole-exome sequencing which identified a de novo novel variant in the SGCE gene, resulting in a diagnosis of SGCE myoclonus-dystonia. Discussion: Myoclonus-dystonia should be considered in patients with symptoms of head and upper extremity myoclonus early in life, especially with co-occurring dystonia, even in the absence of a family history of similar symptoms. Diagnosis of this condition should take place using sequencing, as new mutations continue to be discovered.

7.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
8.
JCI Insight ; 9(2)2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38032732

RESUMEN

Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.


Asunto(s)
Relojes Circadianos , Enfermedad de Parkinson , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Noqueados , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
9.
Neurology ; 101(24): e2545-e2559, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37857496

RESUMEN

BACKGROUND AND OBJECTIVES: Although orthostatic hypotension (OH) can be an early feature of autonomic dysfunction in isolated REM sleep behavior disorder (iRBD), no large-scale studies have examined the frequency of OH in iRBD. In this study, we prospectively evaluated the frequency of OH in a large multicenter iRBD cohort. METHODS: Participants 18 years or older with video polysomnogram-confirmed iRBD were enrolled through the North American Prodromal Synucleinopathy consortium. All participants underwent 3-minute orthostatic stand testing to assess the frequency of OH, and a Δ heart rate/Δ systolic blood pressure (ΔHR/ΔSBP) ratio <0.5 was used to define reduced HR augmentation, suggestive of neurogenic OH. All participants completed a battery of assessments, including the Scales for Outcomes in Parkinson Disease-Autonomic Dysfunction (SCOPA-AUT) and others assessing cognitive, motor, psychiatric, and sensory domains. RESULTS: Of 340 iRBD participants (65 ± 10 years, 82% male), 93 (27%) met criteria for OH (ΔHR/ΔSBP 0.37 ± 0.28; range 0.0-1.57), and of these, 72 (77%) met criteria for OH with reduced HR augmentation (ΔHR/ΔSBP 0.28 ± 0.21; range 0.0-0.5). Supine hypertension (sHTN) was present in 72% of those with OH. Compared with iRBD participants without OH, those with OH were older, reported older age of RBD symptom onset, and had worse olfaction. There was no difference in autonomic symptom scores as measured by SCOPA-AUT. DISCUSSION: OH and sHTN are common in iRBD. However, as patients may have reduced autonomic symptom awareness, orthostatic stand testing should be considered in clinical evaluations. Longitudinal studies are needed to clarify the relationship between OH and phenoconversion risk in iRBD. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov: NCT03623672; North American Prodromal Synucleinopathy Consortium.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Hipotensión Ortostática , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , Masculino , Femenino , Trastorno de la Conducta del Sueño REM/diagnóstico , Hipotensión Ortostática/diagnóstico , Hipotensión Ortostática/epidemiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/epidemiología , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/epidemiología
10.
Neuron ; 111(15): 2383-2398.e7, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37315555

RESUMEN

The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.


Asunto(s)
Sinucleinopatías , Tauopatías , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción ARNTL/genética , Astrocitos/metabolismo , Sinucleinopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo
11.
Ann Neurol ; 93(1): 184-195, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331161

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Neocórtex , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones , Enfermedad por Cuerpos de Lewy/patología , Neocórtex/patología , Enfermedad de Alzheimer/patología
12.
Nat Med ; 28(12): 2547-2554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424467

RESUMEN

Despite recent advances in fluid biomarker research in Alzheimer's disease (AD), there are no fluid biomarkers or imaging tracers with utility for diagnosis and/or theragnosis available for other tauopathies. Using immunoprecipitation and mass spectrometry, we show that 4 repeat (4R) isoform-specific tau species from microtubule-binding region (MTBR-tau275 and MTBR-tau282) increase in the brains of corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD)-MAPT and AD but decrease inversely in the cerebrospinal fluid (CSF) of CBD, FTLD-MAPT and AD compared to control and other FTLD-tau (for example, Pick's disease). CSF MTBR-tau measures are reproducible in repeated lumbar punctures and can be used to distinguish CBD from control (receiver operating characteristic area under the curve (AUC) = 0.889) and other FTLD-tau, such as PSP (AUC = 0.886). CSF MTBR-tau275 and MTBR-tau282 may represent the first affirmative biomarkers to aid in the diagnosis of primary tauopathies and facilitate clinical trial designs.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Tauopatías , Humanos , Tauopatías/patología , Proteínas tau , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Degeneración Lobar Frontotemporal/patología , Demencia Frontotemporal/patología , Biomarcadores , Microtúbulos
13.
Mol Neurodegener ; 17(1): 30, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414105

RESUMEN

BACKGROUND: Neuronal uptake and subsequent spread of proteopathic seeds, such as αS (alpha-synuclein), Tau, and TDP-43, contribute to neurodegeneration. The cellular machinery participating in this process is poorly understood. One proteinopathy called multisystem proteinopathy (MSP) is associated with dominant mutations in Valosin Containing Protein (VCP). MSP patients have muscle and neuronal degeneration characterized by aggregate pathology that can include αS, Tau and TDP-43. METHODS: We performed a fluorescent cell sorting based genome-wide CRISPR-Cas9 screen in αS biosensors. αS and TDP-43 seeding activity under varied conditions was assessed using FRET/Flow biosensor cells or immunofluorescence for phosphorylated αS or TDP-43 in primary cultured neurons. We analyzed in vivo seeding activity by immunostaining for phosphorylated αS following intrastriatal injection of αS seeds in control or VCP disease mutation carrying mice. RESULTS: One hundred fifty-four genes were identified as suppressors of αS seeding. One suppressor, VCP when chemically or genetically inhibited increased αS seeding in cells and neurons. This was not due to an increase in αS uptake or αS protein levels. MSP-VCP mutation expression increased αS seeding in cells and neurons. Intrastriatal injection of αS preformed fibrils (PFF) into VCP-MSP mutation carrying mice increased phospho αS expression as compared to control mice. Cells stably expressing fluorescently tagged TDP-43 C-terminal fragment FRET pairs (TDP-43 biosensors) generate FRET when seeded with TDP-43 PFF but not monomeric TDP-43. VCP inhibition or MSP-VCP mutant expression increases TDP-43 seeding in TDP-43 biosensors. Similarly, treatment of neurons with TDP-43 PFFs generates high molecular weight insoluble phosphorylated TDP-43 after 5 days. This TDP-43 seed dependent increase in phosphorlyated TDP-43 is further augmented in MSP-VCP mutant expressing neurons. CONCLUSION: Using an unbiased screen, we identified the multifunctional AAA ATPase VCP as a suppressor of αS and TDP-43 aggregate seeding in cells and neurons. VCP facilitates the clearance of damaged lysosomes via lysophagy. We propose that VCP's surveillance of permeabilized endosomes may protect against the proteopathic spread of pathogenic protein aggregates. The spread of distinct aggregate species may dictate the pleiotropic phenotypes and pathologies in VCP associated MSP.


Asunto(s)
Proteínas de Unión al ADN , Neuronas , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Mutación , Neuronas/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
14.
Mol Neurodegener ; 17(1): 23, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313950

RESUMEN

Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Glaucoma/patología , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Neuroprotección , Nervio Óptico/patología
15.
Ann Clin Transl Neurol ; 8(9): 1817-1830, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34342183

RESUMEN

OBJECTIVE: Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer's disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. METHODS: Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid-beta (Aß) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. RESULTS: Individuals with AD had high CSF pT217/T217 and low Aß42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aß 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aß 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aß 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aß 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. INTERPRETATION: MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Tauopatías/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación/fisiología , Tomografía de Emisión de Positrones , Tauopatías/diagnóstico por imagen , Tauopatías/genética , Proteínas tau/genética
16.
Mov Disord ; 36(4): 948-954, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33253432

RESUMEN

BACKGROUND: The clinical diagnosis of Parkinson's disease (PD) requires the presence of parkinsonism and supportive criteria that include a clear and dramatic beneficial response to dopaminergic therapy. Our aim was to test the diagnostic criterion of dopaminergic response by evaluating its association with pathologically confirmed diagnoses in a large population of parkinsonian patients. METHODS: We reviewed clinical data maintained in an electronic medical record from all patients with autopsy data who had been seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2018. All patients with parkinsonism who underwent postmortem neuropathologic examination were included in this analysis. RESULTS: There were 257 unique parkinsonian patients with autopsy-based diagnoses who had received dopaminergic therapy. Marked or moderate response to dopaminergic therapy occurred in 91.2% (166/182) of those with autopsy-confirmed PD, 52.0% (13/25) of those with autopsy-confirmed multiple systems atrophy, 44.4% (8/18) of those with autopsy-confirmed progressive supranuclear palsy, and 1 (1/8) with autopsy-confirmed corticobasal degeneration. Other diagnoses were responsible for the remaining 24 individuals, 9 of whom had a moderate response to dopaminergic therapy. CONCLUSION: A substantial response to dopaminergic therapy is frequent but not universal in PD. An absent response does not exclude PD. In other neurodegenerative disorders associated with parkinsonism, a prominent response may also be evident, but this occurs less frequently than in PD. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
17.
Acta Neuropathol Commun ; 8(1): 196, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213513

RESUMEN

Alpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid beta1-42, total tau, and phosphorylated tau181 as quantitative traits in genetic studies have provided novel insights into Alzheimer's disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers in Parkinson's disease has not yet been conducted. Here, genome-wide association studies of CSF biomarker levels in a cohort of individuals with Parkinson's disease and controls (N = 1960) were performed. PD cases exhibited significantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid beta1-42 levels (effect = - 0.5, p = 9.2 × 10-19). No genome-wide loci associated with CSF alpha-synuclein, total tau, or phosphorylated tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkinson's disease risk meta-analysis were associated with Parkinson's disease status (p = 0.035) and the genomic architecture of CSF amyloid beta1-42 (R2 = 2.29%; p = 2.5 × 10-11). Individuals with higher polygenic risk scores for PD risk presented with lower CSF amyloid beta1-42 levels (p = 7.3 × 10-04). Two-sample Mendelian Randomization revealed that CSF amyloid beta1-42 plays a role in Parkinson's disease (p = 1.4 × 10-05) and age at onset (p = 7.6 × 10-06), an effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated with significantly lower levels of CSF amyloid beta1-42 (p = 3.8 × 10-06), higher mean cortical binding potentials (p = 5.8 × 10-08), and higher Braak amyloid beta score (p = 4.4 × 10-04). Together these results from high-throughput and hypothesis-free approaches converge on a genetic link between Parkinson's disease, CSF amyloid beta1-42, and APOE.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Enfermedad de Parkinson/genética , Fragmentos de Péptidos/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteína E4/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Fragmentos de Péptidos/líquido cefalorraquídeo , Fosforilación , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/metabolismo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo
18.
J Cell Sci ; 133(20)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32989039

RESUMEN

TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Estructuras R-Loop
19.
Acta Neuropathol ; 139(5): 963, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32172342

RESUMEN

The original version of this article unfortunately contained a mistake. Supplementary Tables 3 and 4 are not available with the rest of the supplementary material available online.

20.
Sci Transl Med ; 12(529)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024799

RESUMEN

Apolipoprotein E (APOE) ε4 genotype is associated with increased risk of dementia in Parkinson's disease (PD), but the mechanism is not clear, because patients often have a mixture of α-synuclein (αSyn), amyloid-ß (Aß), and tau pathologies. APOE ε4 exacerbates brain Aß pathology, as well as tau pathology, but it is not clear whether APOE genotype independently regulates αSyn pathology. In this study, we generated A53T αSyn transgenic mice (A53T) on Apoe knockout (A53T/EKO) or human APOE knockin backgrounds (A53T/E2, E3, and E4). At 12 months of age, A53T/E4 mice accumulated higher amounts of brainstem detergent-insoluble phosphorylated αSyn compared to A53T/EKO and A53T/E3; detergent-insoluble αSyn in A53T/E2 mice was undetectable. By immunohistochemistry, A53T/E4 mice displayed a higher burden of phosphorylated αSyn and reactive gliosis compared to A53T/E2 mice. A53T/E2 mice exhibited increased survival and improved motor performance compared to other APOE genotypes. In a complementary model of αSyn spreading, striatal injection of αSyn preformed fibrils induced greater accumulation of αSyn pathology in the substantia nigra of A53T/E4 mice compared to A53T/E2 and A53T/EKO mice. In two separate cohorts of human patients with PD, APOE ε4/ε4 individuals showed the fastest rate of cognitive decline over time. Our results demonstrate that APOE genotype directly regulates αSyn pathology independent of its established effects on Aß and tau, corroborate the finding that APOE ε4 exacerbates pathology, and suggest that APOE ε2 may protect against αSyn aggregation and neurodegeneration in synucleinopathies.


Asunto(s)
Sinucleinopatías , Animales , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Progresión de la Enfermedad , Genotipo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...