Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurology ; 102(10): e209247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684044

RESUMEN

BACKGROUND AND OBJECTIVES: Previously we demonstrated that 90% of infarcts in children with sickle cell anemia occur in the border zone regions of cerebral blood flow (CBF). We tested the hypothesis that adults with sickle cell disease (SCD) have silent cerebral infarcts (SCIs) in the border zone regions, with a secondary hypothesis that older age and traditional stroke risk factors would be associated with infarct occurrence in regions outside the border zones. METHODS: Adults with SCD 18-50 years of age were enrolled in a cross-sectional study at 2 centers and completed a 3T brain MRI. Participants with a history of overt stroke were excluded. Infarct masks were manually delineated on T2-fluid-attenuated inversion-recovery MRI and registered to the Montreal Neurological Institute 152 brain atlas to generate an infarct heatmap. Border zone regions between anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA) were quantified using the Digital 3D Brain MRI Arterial Territories Atlas, and logistic regression was applied to identify relationships between infarct distribution, demographics, and stroke risk factors. RESULTS: Of 113 participants with SCD (median age 26.1 years, interquartile range [IQR] 21.6-31.4 years, 51% male), 56 (49.6%) had SCIs. Participants had a median of 5.5 infarcts (IQR 3.2-13.8). Analysis of infarct distribution showed that 350 of 644 infarcts (54.3%) were in 4 border zones of CBF and 294 (45.6%) were in non-border zone territories. More than 90% of infarcts were in 3 regions: the non-border zone ACA and MCA territories and the ACA-MCA border zone. Logistic regression showed that older participants have an increased chance of infarcts in the MCA territory (odds ratio [OR] 1.08; 95% CI 1.03-1.13; p = 0.001) and a decreased chance of infarcts in the ACA-MCA border zone (OR 0.94; 95% CI 0.90-0.97; p < 0.001). The presence of at least 1 stroke risk factor did not predict SCI location in any model. DISCUSSION: When compared with children with SCD, in adults with SCD, older age is associated with expanded zones of tissue infarction that stretch beyond the traditional border zones of CBF, with more than 45% of infarcts in non-border zone regions.


Asunto(s)
Anemia de Células Falciformes , Infarto Cerebral , Imagen por Resonancia Magnética , Humanos , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/epidemiología , Masculino , Femenino , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/epidemiología , Infarto Cerebral/etiología , Adulto , Adulto Joven , Estudios Transversales , Persona de Mediana Edad , Adolescente , Factores de Riesgo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Circulación Cerebrovascular/fisiología
2.
medRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38463978

RESUMEN

Background: Moyamoya disease (MMD) is a non-atherosclerotic intracranial steno-occlusive condition placing patients at high risk for ischemic stroke. Direct and indirect surgical revascularization can improve blood flow in MMD; however, randomized trials demonstrating efficacy have not been performed and biomarkers of parenchymal hemodynamic impairment are needed to triage patients for interventions and evaluate post-surgical efficacy. We test the hypothesis that hypercapnia-induced maximum cerebrovascular reactivity (CVR MAX ) and the more novel indicator cerebrovascular reactivity (CVR) response time (CVR DELAY ), both assessed from time-regression analyses of non-invasive hypercapnic imaging, correlate with recent focal ischemic symptoms. Methods: Hypercapnic reactivity medical resonance imaging (blood oxygenation level-dependent; echo time=35ms; spatial resolution=3.5×3.5×3.5mm) and catheter angiography assessments of cortical reserve capacity and vascular patency, respectively, in MMD participants (n=73) were performed in sequence. Time regression analyses were applied to quantify CVR MAX and CVR DELAY . Symptomatology information for each hemisphere (n=109) was categorized into symptomatic (ischemic symptoms within six months) or asymptomatic (no history of ischemic symptoms) and logistic regression analysis assessed the association of CVR metrics with ischemic symptoms after controlling for age and sex. Results: Symptomatic hemispheres displayed lengthened CVR DELAY (p<0.001), which was more discriminatory between hemispheres than CVR MAX (p=0.037). CVR DELAY (p<0.001), but not CVR MAX (p=0.127), was found to be sensitively related to age in asymptomatic tissue (0.33-unit increase/year); age-dependent normative ranges are presented to enable quantitative assessment of patient-specific impairment. Furthermore, the area under the receiver operating characteristic curves shows that CVR DELAY predicts ischemic symptoms (p<0.001), whereas CVR MAX does not (p=0.056). Conclusion: Findings support that CVR metrics are uniquely altered in hemispheres with recent ischemic symptoms, motivating the investigation of CVR as a surrogate of ischemic symptomatology and treatment efficacy.

3.
Brain Commun ; 6(1): fcae024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370445

RESUMEN

Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.

4.
Blood Adv ; 8(3): 608-619, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-37883803

RESUMEN

ABSTRACT: Preliminary evidence from a series of 4 adults with sickle cell disease (SCD) suggests that hematopoietic stem cell transplant (HSCT) improves cerebral hemodynamics. HSCT largely normalizes cerebral hemodynamics in children with SCD. We tested the hypothesis in adults with SCD that cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) measured using magnetic resonance imaging, normalized to healthy values, comparing measurements from ∼1 month before to 12 to 24 months after HSCT (n = 11; age, 33.3 ± 8.9 years; 389 ± 150 days after HSCT) with age-, race- and sex-matched values from healthy adults without sickle trait (n = 28; age, 30.2 ± 5.6 years). Before transplant, 7 patients had neurological indications for transplant (eg, overt stroke) and 4 had nonneurological reasons for haploidentical bone marrow transplant (haplo-BMT). All received haplo-BMT from first-degree relatives (parent, sibling, or child donor) with reduced-intensity preparation and maintained engraftment. Before transplant, CBF was elevated (CBF, 69.11 ± 24.7 mL/100 g/min) compared with that of controls (P = .004). Mean CBF declined significantly after haplo-BMT (posttransplant CBF, 48.2 ± 13.9 mL/100 g/min; P = .003). OEF was not different from that of controls at baseline and did not change significantly after haplo-BMT (pretransplant, 43.1 ± 6.7%; posttransplant, 39.6 ± 7.0%; P = .34). After transplant, CBF and OEF were not significantly different from controls (CBF, 48.2 ± 13.4 mL/100 g/min; P = .78; and OEF, 39.6 ± 7.0%; P > .99). CMRO2 did not change significantly after haplo-BMT (pretransplant, 3.18 ± 0.87 mL O2/100 g/min; posttransplant, 2.95 ± 0.83; P = .56). Major complications of haplo-BMT included 1 infection-related death and 1 severe chronic graft-versus-host disease. Haplo-BMT in adults with SCD reduces CBF to that of control values and maintains OEF and CMRO2 on average at levels observed in healthy adult controls. The trial was registered at www.clinicaltrials.gov as #NCT01850108.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Adulto , Niño , Humanos , Adulto Joven , Trasplante de Médula Ósea , Anemia de Células Falciformes/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Hemodinámica , Oxígeno/metabolismo
5.
Neurobiol Lang (Camb) ; 4(4): 536-549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946731

RESUMEN

After a stroke, individuals with aphasia often recover to a certain extent over time. This recovery process may be dependent on the health of surviving brain regions. Leukoaraiosis (white matter hyperintensities on MRI reflecting cerebral small vessel disease) is one indication of compromised brain health and is associated with cognitive and motor impairment. Previous studies have suggested that leukoaraiosis may be a clinically relevant predictor of aphasia outcomes and recovery, although findings have been inconsistent. We investigated the relationship between leukoaraiosis and aphasia in the first year after stroke. We recruited 267 patients with acute left hemispheric stroke and coincident fluid attenuated inversion recovery MRI. Patients were evaluated for aphasia within 5 days of stroke, and 174 patients presented with aphasia acutely. Of these, 84 patients were evaluated at ∼3 months post-stroke or later to assess longer-term speech and language outcomes. Multivariable regression models were fit to the data to identify any relationships between leukoaraiosis and initial aphasia severity, extent of recovery, or longer-term aphasia severity. We found that leukoaraiosis was present to varying degrees in 90% of patients. However, leukoaraiosis did not predict initial aphasia severity, aphasia recovery, or longer-term aphasia severity. The lack of any relationship between leukoaraiosis severity and aphasia recovery may reflect the anatomical distribution of cerebral small vessel disease, which is largely medial to the white matter pathways that are critical for speech and language function.

6.
Front Neurol ; 14: 1112865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064181

RESUMEN

Introduction: Sickle cell disease (SCD) increases cerebral infarct risk, but reported effects on brain volume have varied. More detailed information using larger cohorts and contemporary methods could motivate the use of longitudinal brain volume assessment in SCD as an automated marker of disease stability or future progression. The purpose of this study was to rigorously evaluate whether children and young adults with SCD have reduced gray matter volume (GMV) and white matter volume (WMV) compared to healthy controls using high-resolution MRI. We tested the hypotheses that (i) elevated CBF, a marker of cerebral hemodynamic compensation in SCD, is associated with global and regional brain atrophy, and (ii) silent cerebral infarct burden is associated with brain atrophy in excess of infarct volume. Methods: Healthy controls (n = 49) and SCD participants without overt stroke (n = 88) aged 7-32 years completed 3 T brain MRI; pseudocontinuous arterial spin labeling measured CBF. Multivariable linear regressions assessed associations of independent variables with GMV, WMV, and volumes of cortical/subcortical regions. Results: Reduced hemoglobin was associated with reductions in both GMV (p = 0.032) and WMV (p = 0.005); reduced arterial oxygen content (CaO2) was also associated with reductions in GMV (p = 0.035) and WMV (p = 0.006). Elevated gray matter CBF was associated with reduced WMV (p = 0.018). Infarct burden was associated with reductions in WMV 30-fold greater than the infarct volume itself (p = 0.005). Increased GM CBF correlated with volumetric reductions of the insula and left and right caudate nuclei (p = 0.017, 0.017, 0.036, respectively). Infarct burden was associated with reduced left and right nucleus accumbens, right thalamus, and anterior corpus callosum volumes (p = 0.002, 0.002, 0.009, 0.002, respectively). Discussion: We demonstrate that anemia and decreased CaO2 are associated with reductions in GMV and WMV in SCD. Increased CBF and infarct burden were also associated with reduced volume in subcortical structures. Global WMV deficits associated with infarct burden far exceed infarct volume itself. Hemodynamic compensation via increased cerebral blood flow in SCD seems inadequate to prevent brain volume loss. Our work highlights that silent cerebral infarcts are just a portion of the brain injury that occurs in SCD; brain volume is another potential biomarker of brain injury in SCD.

7.
Magn Reson Med ; 90(1): 211-221, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36880522

RESUMEN

PURPOSE: Asymmetric spin echo (ASE) MRI is a method for measuring regional oxygen extraction fraction (OEF); however, extravascular tissue models have been shown to under-estimate OEF. The hypothesis investigated here is that the addition of a vascular-space-occupancy (VASO) pre-pulse will more fully suppress blood water signal and provide global OEF values more consistent with physiological expectation and 15 O positron emission tomography (PET)-validated T2 -relaxation-under-spin-tagging (TRUST) OEF measures. METHODS: Healthy adults (n = 14; age = 27.7 ± 5.2 y; sex = 7/7 male/female) were scanned at 3.0T. Multi-echo ASE without inter-readout refocusing (ASERF- ), multi-echo ASE with inter-readout refocusing (ASERF+ ), and single-echo VASO-ASE were acquired twice each with common spatial resolution = 3.44 × 3.44 × 3.0 mm and τ = 0-20 ms (interval = 0.5 ms). TRUST was acquired twice sequentially for independent global OEF assessment (τCPMG  = 10 ms; effective TEs = 0, 40, 80, and 160 ms; spatial resolution = 3.4 × 3.4 × 5 mm). OEF intraclass-correlation-coefficients (ICC), summary statistics, and group-wise differences were assessed (Wilcoxon rank-sum; significance: two-sided p < 0.05). RESULTS: ASERF+ (OEF = 36.8 ± 1.9%) and VASO-ASE (OEF = 34.4 ± 2.3%) produced OEF values similar to TRUST (OEF = 36.5 ± 4.6%, human calibration model; OEF = 32.7 ± 4.9%, bovine calibration model); however, ASERF- yielded lower OEF (OEF = 26.1 ± 1.0%; p < 0.01) relative to TRUST. VASO-ASE (ICC = 0.61) yielded lower ICC compared to other ASE variants (ICC >0.89). CONCLUSION: VASO-ASE and TRUST provide similar OEF values; however, VASO-ASE spatial coverage and repeatability improvements are required.


Asunto(s)
Imagen por Resonancia Magnética , Oxígeno , Adulto , Humanos , Masculino , Femenino , Animales , Bovinos , Adulto Joven , Imagen por Resonancia Magnética/métodos , Frecuencia Cardíaca , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Consumo de Oxígeno
8.
Brain ; 146(3): 1021-1039, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35388420

RESUMEN

Most individuals who experience aphasia after a stroke recover to some extent, with the majority of gains taking place in the first year. The nature and time course of this recovery process is only partially understood, especially its dependence on lesion location and extent, which are the most important determinants of outcome. The aim of this study was to provide a comprehensive description of patterns of recovery from aphasia in the first year after stroke. We recruited 334 patients with acute left hemisphere supratentorial ischaemic or haemorrhagic stroke and evaluated their speech and language function within 5 days using the Quick Aphasia Battery (QAB). At this initial time point, 218 patients presented with aphasia. Individuals with aphasia were followed longitudinally, with follow-up evaluations of speech and language at 1 month, 3 months, and 1 year post-stroke, wherever possible. Lesions were manually delineated based on acute clinical MRI or CT imaging. Patients with and without aphasia were divided into 13 groups of individuals with similar, commonly occurring patterns of brain damage. Trajectories of recovery were then investigated as a function of group (i.e. lesion location and extent) and speech/language domain (overall language function, word comprehension, sentence comprehension, word finding, grammatical construction, phonological encoding, speech motor programming, speech motor execution, and reading). We found that aphasia is dynamic, multidimensional, and gradated, with little explanatory role for aphasia subtypes or binary concepts such as fluency. Patients with circumscribed frontal lesions recovered well, consistent with some previous observations. More surprisingly, most patients with larger frontal lesions extending into the parietal or temporal lobes also recovered well, as did patients with relatively circumscribed temporal, temporoparietal, or parietal lesions. Persistent moderate or severe deficits were common only in patients with extensive damage throughout the middle cerebral artery distribution or extensive temporoparietal damage. There were striking differences between speech/language domains in their rates of recovery and relationships to overall language function, suggesting that specific domains differ in the extent to which they are redundantly represented throughout the language network, as opposed to depending on specialized cortical substrates. Our findings have an immediate clinical application in that they will enable clinicians to estimate the likely course of recovery for individual patients, as well as the uncertainty of these predictions, based on acutely observable neurological factors.


Asunto(s)
Afasia , Accidente Cerebrovascular , Humanos , Afasia/patología , Lóbulo Temporal/patología , Habla , Lenguaje , Imagen por Resonancia Magnética
9.
Neurobiol Aging ; 124: 85-97, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36446680

RESUMEN

Enlarged perivascular spaces (ePVS) are difficult to quantify, and their etiologies and consequences are poorly understood. Vanderbilt Memory and Aging Project participants (n = 327, 73 ± 7 years) completed 3T brain MRI to quantify ePVS volume and count, longitudinal neuropsychological assessment, and cardiac MRI to quantify aortic stiffness. Linear regressions related (1) PWV to ePVS burden and (2) ePVS burden to cross-sectional and longitudinal neuropsychological performance adjusting for key demographic and medical factors. Higher aortic stiffness related to greater basal ganglia ePVS volume (ß = 7.0×10-5, p = 0.04). Higher baseline ePVS volume was associated with worse baseline information processing (ß = -974, p = 0.003), executive function (ß = -81.9, p < 0.001), and visuospatial performances (ß = -192, p = 0.02) and worse longitudinal language (ß = -54.9, p = 0.05), information processing (ß = -147, p = 0.03), executive function (ß = -10.9, p = 0.03), and episodic memory performances (ß = -10.6, p = 0.02). Results were similar for ePVS count. Greater arterial stiffness relates to worse basal ganglia ePVS burden, suggesting cardiovascular aging as an etiology. ePVS burden is associated with adverse cognitive trajectory, emphasizing the clinical relevance of ePVS.


Asunto(s)
Sistema Glinfático , Rigidez Vascular , Humanos , Estudios Transversales , Cognición , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
11.
Arterioscler Thromb Vasc Biol ; 41(12): 3015-3024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34706559

RESUMEN

OBJECTIVE: To determine whether baseline aortic stiffness, measured by aortic pulse wave velocity (PWV), relates to longitudinal cerebral gray or white matter changes among older adults. Baseline cardiac magnetic resonance imaging will be used to assess aortic PWV while brain magnetic resonance imaging will be used to assess gray matter and white matter hyperintensity (WMH) volumes at baseline, 18 months, 3 years, 5 years, and 7 years. Approach and Results: Aortic PWV (m/s) was quantified from cardiac magnetic resonance. Multimodal 3T brain magnetic resonance imaging included T1-weighted imaging for quantifying gray matter volumes and T2-weighted fluid-attenuated inversion recovery imaging for quantifying WMHs. Mixed-effects regression models related baseline aortic PWV to longitudinal gray matter volumes (total, frontal, parietal, temporal, occipital, hippocampal, and inferior lateral ventricle) and WMH volumes (total, frontal, parietal, temporal, and occipital) adjusting for age, sex, race/ethnicity, education, cognitive diagnosis, Framingham stroke risk profile, APOE (apolipoprotein E)-ε4 carrier status, and intracranial volume. Two hundred seventy-eight participants (73±7 years, 58% male, 87% self-identified as non-Hispanic White, 159 with normal cognition, and 119 with mild cognitive impairment) from the Vanderbilt Memory & Aging Project (n=335) were followed on average for 4.9±1.6 years with PWV measurements occurring from September 2012 to November 2014 and longitudinal brain magnetic resonance imaging measurements occurring from September 2012 to June 2021. Higher baseline aortic PWV was related to greater decrease in hippocampal (ß=-3.6 [mm3/y]/[m/s]; [95% CI, -7.2 to -0.02] P=0.049) and occipital lobe (ß=-34.2 [mm3/y]/[m/s]; [95% CI, -67.8 to -0.55] P=0.046) gray matter volume over time. Higher baseline aortic PWV was related to greater increase in WMH volume over time in the temporal lobe (ß=17.0 [mm3/y]/[m/s]; [95% CI, 7.2-26.9] P<0.001). All associations may be driven by outliers. CONCLUSIONS: In older adults, higher baseline aortic PWV related to greater decrease in gray matter volume and greater increase in WMHs over time. Because of unmet cerebral metabolic demands and microvascular remodeling, arterial stiffening may preferentially affect certain highly active brain regions like the temporal lobes. These same regions are affected early in the course of Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aorta Torácica/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Cognición/fisiología , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Anciano , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico , Aorta Torácica/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Sustancia Gris/fisiopatología , Humanos , Masculino , Análisis de la Onda del Pulso , Estudios Retrospectivos , Factores de Tiempo , Rigidez Vascular , Sustancia Blanca/fisiopatología
12.
Radiol Res Pract ; 2021: 5531775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055410

RESUMEN

Sickle cell disease (SCD) is a well-characterized hemoglobinopathy affecting more than 20 million individuals worldwide and carries an increased risk of cerebral vasculopathy, cerebral infarct, and stroke. As mechanisms of cerebral infarction in SCD are partly attributable to microvascular vaso-occlusive crises, manifesting as altered cerebral blood flow and associated impaired oxygen delivery, magnetic resonance imaging (MRI) methods that can quickly provide a comprehensive perspective on structural and functional disease status, without exogenous contrast administration or ionizing radiation, have emerged as crucial clinical tools for surveillance. However, early ex vivo MRI work in suspended erythrocytes containing hemoglobin S at 0.35 Tesla (T) suggested that sickled erythrocytes can orient preferentially in the presence of an external magnetic field, and as such, it was suggested that MRI exams in sickle cell hemoglobinopathy could induce vaso-occlusion. While this observation has generally not impacted clinical imaging in individuals with SCD, it has led to resistance for some sickle cell studies within the engineering community among some imaging scientists as this early observation has never been rigorously shown to be unconcerning. Here, we performed MRI at the clinical field strength of 3 T in 172 patients with SCD, which included standard anatomical and angiographic assessments together with gold standard diffusion-weighted imaging (DWI; spatial resolution = 1.8 × 1.8 × 4 mm; b-value = 1000 s/mm2) for acute infarct assessment (performed approximately 20 min after patient introduction to the field isocenter). The presence of vasculopathy, as well as chronic and acute infarcts, was evaluated by two independent board-certified radiologists using standard clinical criteria. In these patients (52.3% female; mean age = 19.6 years; age range = 6-44 years), hematocrit (mean = 25.8%; range = 15-36%), hemoglobin phenotype (87.8% HbSS variant), presence of silent infarct (44.2%), and overt chronic infarct (13.4%) were consistent with a typical SCD population; however, no participants exhibited evidence of acute infarction. These findings are consistent with 3 T MRI not inducing acute infarction or vaso-occlusion in individuals with SCD and suggest that earlier low-field ex vivo work of erythrocytes in suspension is not a sufficient cause to discourage MRI scans in patients with SCD.

13.
J Cereb Blood Flow Metab ; 41(10): 2699-2711, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33906512

RESUMEN

Cerebrospinal fluid (CSF) and interstitial fluid exchange have been shown to increase following pharmacologically-manipulated increases in cerebral arterial pulsatility, consistent with arterial pulsatility improving CSF circulation along perivascular glymphatic pathways. The choroid plexus (CP) complexes produce CSF, and CP activity may provide a centralized indicator of perivascular flow. We tested the primary hypothesis that elevated cortical cerebral blood volume and flow, present in sickle cell disease (SCD), is associated with fractionally-reduced CP perfusion relative to healthy adults, and the supplementary hypothesis that reduced arterial patency, present in moyamoya vasculopathy, is associated with elevated fractional CP perfusion relative to healthy adults. Participants (n = 75) provided informed consent and were scanned using a 3-Tesla arterial-spin-labeling MRI sequence for CP and cerebral gray matter (GM) perfusion quantification. ANOVA was used to calculate differences in CP-to-GM perfusion ratios between groups, and regression analyses applied to evaluate the dependence of the CP-to-GM perfusion ratio on group after co-varying for age and sex. ANOVA yielded significant (p < 0.001) group differences, with CP-to-GM perfusion ratios increasing between SCD (ratio = 0.93 ± 0.28), healthy (ratio = 1.04 ± 0.32), and moyamoya (ratio = 1.29 ± 0.32) participants, which was also consistent with regression analyses. Findings are consistent with CP perfusion being inversely associated with cortical perfusion.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Plexo Coroideo/fisiopatología , Sistema Glinfático/fisiopatología , Enfermedad de Moyamoya/fisiopatología , Enfermedades Vasculares/fisiopatología , Adulto , Femenino , Humanos , Masculino
14.
Pediatr Neurol ; 114: 29-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190070

RESUMEN

BACKGROUND: Prevalence and contribution of intracranial and extracranial arterial stenosis to stroke risk were assessed prospectively in children and young adults with sickle cell disease. METHODS: In this cross-sectional study, children and young adults (mean = 19.4 years) with sickle cell disease underwent neurological examination, brain MRI, and magnetic resonance angiography of the head and neck. Two neuroradiologists independently recorded infarcts and arterial stenosis. Clinical features and stroke outcomes were compared between participants with and without stenosis and between children and young adults. Logistic regression analysis assessed the association of variables of interest with overt stroke and silent cerebral infarct. RESULTS: Of 167 participants (79 children and 88 young adults), 20 (12.0%) had intracranial stenosis, all in the anterior circulation, and nine had concurrent extracranial stenosis. No participants had isolated extracranial stenosis. Participants with intracranial stenosis were more likely than those without stenosis to have an overt stroke (70% vs 5%, P < 0.001) or silent cerebral infarct (95% vs 35%, P < 0.001). Logistic regression analysis indicated that intracranial stenosis was strongly associated with overt stroke when compared with participants with silent cerebral infarct alone and strongly associated with silent cerebral infarct when compared with participants with normal brain MRI; male sex and age were also significant predictors of silent cerebral infarct. CONCLUSIONS: Intracranial stenosis was strongly associated with both overt stroke and silent cerebral infarct; prevalence of intracranial stenosis was similar to prior estimates in sickle cell disease. Extracranial stenosis without concurrent intracranial stenosis did not occur and thus could not be evaluated as an independent risk factor for stroke.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Arteriopatías Oclusivas/complicaciones , Enfermedades Arteriales Intracraneales/complicaciones , Accidente Cerebrovascular/etiología , Adolescente , Adulto , Anemia de Células Falciformes/epidemiología , Arteriopatías Oclusivas/diagnóstico por imagen , Arteriopatías Oclusivas/epidemiología , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/epidemiología , Infarto Cerebral/etiología , Niño , Constricción Patológica/complicaciones , Constricción Patológica/diagnóstico por imagen , Constricción Patológica/epidemiología , Estudios Transversales , Femenino , Humanos , Enfermedades Arteriales Intracraneales/diagnóstico por imagen , Enfermedades Arteriales Intracraneales/epidemiología , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Cuello/irrigación sanguínea , Cuello/diagnóstico por imagen , Prevalencia , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Adulto Joven
15.
Brain Imaging Behav ; 15(4): 2040-2050, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33040257

RESUMEN

Subclinical cardiac dysfunction is associated with smaller total brain volume on magnetic resonance imaging (MRI). To study whether cardiac output relates to regional measurements of grey and white matter structure, older adults (n = 326) underwent echocardiogram to quantify cardiac output (L/min) and brain MRI. Linear regressions related cardiac output to grey matter volumes measured on T1 and white matter hyperintensities assessed on T2-FLAIR. Voxelwise analyses related cardiac output to diffusion tensor imaging adjusting for demographic, genetic, and vascular risk factors. Follow-up models assessed a cardiac output x diagnosis interaction with stratification (normal cognition, mild cognitive impairment). Cardiac output interacted with diagnosis, such that lower cardiac output related to smaller total grey matter (p = 0.01), frontal lobe (p = 0.01), and occipital lobe volumes (p = 0.01) among participants with normal cognition. When excluding participants with cardiovascular disease and atrial fibrillation, associations emerged with smaller parietal lobe (p = 0.005) and hippocampal volume (p = 0.05). Subtle age-related cardiac changes may disrupt neuronal homeostasis and impact grey matter integrity prior to cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Anciano , Encéfalo/diagnóstico por imagen , Gasto Cardíaco , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética
16.
J Neurol Surg B Skull Base ; 81(3): 308-316, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32500007

RESUMEN

Management of vestibular schwannoma (VS) includes stereotactic radiosurgery (SRS) in single or fractionated treatments. There is a paucity of literature on the three-dimensional (3D) volumetric kinetics and radiological changes following SRS and no consensus on appropriate post-SRS surveillance imaging timeline. This is a retrospective cohort study with institutional review board approval. A total of 55 patients met study criteria. We collected volumetric kinetic data in VS treated with SRS over time using a target volume contouring software. We also tracked radiographic phenomena such as pseudoprogression and necrosis. A secondary objective was to describe our overall treatment success rate and any failures. For all treatments groups, pseudoprogression most typically occurred within 12 months post-SRS, after which tumor volumes on average normalized and then decreased from pretreatment size at the last follow-up. Only two patients required salvage therapy post-SRS and were considered SRS treatment failures. Both patients were in the five-fraction cohort but with a lower biologically equivalent dose. Our study is first to collect 3D volumetric kinetics of VS following single and fractionated SRS in contrast to extrapolations from single and two-dimensional measurements. Our longitudinal data also show initial increases in volume in the first 12 months post-SRS followed by later declines, setting up interesting questions regarding the utility of early posttreatment surveillance imaging in the asymptomatic patient. Finally, we show low rates of treatment failure (3.6%) and show in our cohort that SRS dose de-escalation posed a risk of treatment failure.

17.
Front Aging Neurosci ; 12: 139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581762

RESUMEN

INTRODUCTION: While Alzheimer's disease (AD) is divided into severity stages, mild cognitive impairment (MCI) remains a solitary construct despite clinical and prognostic heterogeneity. This study aimed to characterize differences in genetic, cerebrospinal fluid (CSF), neuroimaging, and neuropsychological markers across clinician-derived MCI stages. METHODS: Vanderbilt Memory & Aging Project participants with MCI were categorized into 3 severity subtypes at screening based on neuropsychological assessment, functional assessment, and Clinical Dementia Rating interview, including mild (n = 18, 75 ± 8 years), moderate (n = 89 72 ± 7 years), and severe subtypes (n = 18, 78 ± 8 years). At enrollment, participants underwent neuropsychological testing, 3T brain magnetic resonance imaging (MRI), and optional fasting lumbar puncture to obtain CSF. Neuropsychological testing and MRI were repeated at 18-months, 3-years, and 5-years with a mean follow-up time of 3.3 years. Ordinary least square regressions examined cross-sectional associations between MCI severity and apolipoprotein E (APOE)-ε4 status, CSF biomarkers of amyloid beta (Aß), phosphorylated tau, total tau, and synaptic dysfunction (neurogranin), baseline neuroimaging biomarkers, and baseline neuropsychological performance. Longitudinal associations between baseline MCI severity and neuroimaging and neuropsychological trajectory were assessed using linear mixed effects models with random intercepts and slopes and a follow-up time interaction. Analyses adjusted for baseline age, sex, race/ethnicity, education, and intracranial volume for MRI models. RESULTS: Stages differed at baseline on APOE-ε4 status (early < middle = late; p-values < 0.03) and CSF Aß (early > middle = late), phosphorylated and total tau (early = middle < late; p-values < 0.05), and neurogranin concentrations (early = middle < late; p-values < 0.05). MCI stage related to greater longitudinal cognitive decline, hippocampal atrophy, and inferior lateral ventricle dilation (early < late; p-values < 0.03). DISCUSSION: Clinician staging of MCI severity yielded longitudinal cognitive trajectory and structural neuroimaging differences in regions susceptible to AD neuropathology and neurodegeneration. As expected, participants with more severe MCI symptoms at study entry had greater cognitive decline and gray matter atrophy over time. Differences are likely attributable to baseline differences in amyloidosis, tau, and synaptic dysfunction. MCI staging may provide insight into underlying pathology, prognosis, and therapeutic targets.

18.
Clin Neuroradiol ; 30(3): 545-552, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388688

RESUMEN

PURPOSE: To apply intracranial vessel wall imaging (VWI) to determine changes in vessel wall characteristics between North American moyamoya patients and controls, as well as with standard clinical measures of moyamoya disease severity. METHODS: North American moyamoya patients and controls underwent intracranial 3.0 T VWI. Moyamoya patients also underwent digital subtraction angiography (DSA), from which modified Suzuki scores (mSS) were calculated. Lumen and outer vessel wall diameters of the supraclinoid internal carotid arteries (ICAs) and basilar artery on VWI were measured by two readers from which wall thickness was calculated. Controls and moyamoya patients were compared in logistic regression using disease category (moyamoya or none) as the dependent variable and wall thickness, age, gender, and side as the explanatory variables (significance: two-sided p < 0.05). In moyamoya patients, regression was performed with mSS as the dependent variable and wall thickness, age, gender, and side as the explanatory variables. Analyses were repeated for each lumen diameter and outer vessel wall diameter in place of wall thickness. RESULTS: Patients with moyamoya (n = 23, gender = 3/20 male/female; age = 43 ± 12 years) and controls (n = 23, gender = 3/20 male/female, age = 43 ± 13 years) were included. Moyamoya patients showed a significantly smaller ICA lumen and outer vessel wall diameter compared to controls (p < 0.05) but no significant change in vessel wall thickness. Similarly, ICA lumen and outer vessel wall diameters decreased with increasing mSS (p < 0.05). CONCLUSION: Findings suggest decreased ICA lumen and outer vessel wall diameters, but no significant difference in wall thickness, between patients and controls. Lumen and outer vessel wall diameters also decreased with disease severity.


Asunto(s)
Arteria Basilar/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Enfermedad de Moyamoya/diagnóstico por imagen , Adulto , Anciano , Angiografía de Substracción Digital , Estudios de Casos y Controles , Angiografía Cerebral , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Estados Unidos
20.
Artículo en Inglés | MEDLINE | ID: mdl-31762535

RESUMEN

Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation has been regarded as the standard method for whole brain segmentation. In past few years, deep convolutional neural network (DCNN) segmentation methods have demonstrated their advantages in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under external validations, especially when the testing patterns were not presented in the training cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we assess the SLANT method's intra- and inter-protocol reproducibility. SLANT achieved less than 0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-protocol experiments. The results show that the SLANT method achieved high intra- and inter- protocol reproducibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA