Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Talanta ; 232: 122354, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074385

RESUMEN

Interference of the Schlieren effect on sea water analysis by spectrophotometry is caused by the flow of solutions of different ionic strengths through a flow cell. A flow injection assay protocol programmed in a flow-batch format removes this interference and allows the use of a calibration line, obtained in deionized water, for determination of analytes in sea water samples of different salinity. This Single Line Calibration (SLC) technique is validated on the most frequently performed nutrient assays. Automated determinations, performed at rates ranging from 20 to 60 samples/hr, covered seawater sample ranges from nM to mM with limits of detection: 12 nM for nitrite, 94 nM for nitrate, 47 nM for phosphate, and 240 nM for silicate. Reproducibility of the determinations was equal to or better than, 3% r.s.d. and day to day calibration was within 10%. The programmable FI, uses about 1/5th volume of reagents compared to continuous flow techniques.

2.
Trends Cell Biol ; 31(7): 569-583, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865650

RESUMEN

Translocons are protein assemblies that facilitate the targeting and transport of proteins into and across biological membranes. Our understanding of these systems has been advanced using genetics, biochemistry, and structural biology. Despite these classic advances, until recently we have still largely lacked a detailed understanding of how translocons recognize and facilitate protein translocation. With the advent and improvements of cryogenic electron microscopy (cryo-EM) single-particle analysis and single-molecule fluorescence microscopy, the details of how translocons function are finally emerging. Here, we introduce these methods and evaluate their importance in understanding translocon structure, function, and dynamics.


Asunto(s)
Nanotecnología , Membrana Celular , Humanos , Transporte de Proteínas
3.
J Chem Theory Comput ; 17(1): 182-190, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33274920

RESUMEN

An externally corrected coupled cluster (CC) method, where an adaptive configuration interaction (ACI) wave function provides the external cluster amplitudes, named ACI-CC, is presented. By exploiting the connection between configuration interaction and CC through cluster analysis, the higher-order T3 and T4 terms obtained from ACI are used to augment the T1 and T2 amplitude equations from traditional CC. These higher-order contributions are kept frozen during the CC iterations and do not contribute to an increased cost with respect to coupled cluster including the single and double excitations (CCSD). We have benchmarked this method on three closed-shell systems: beryllium dimer, carbonyl oxide, and cyclobutadiene, with good results compared to other corrected CC methods. In all cases, the inclusion of these external corrections improved upon the "gold standard" CCSD(T) results, indicating that ACI-CCSD(T) can be used to assess strong correlation effects in a system and as an inexpensive starting point for more complex external corrections.

4.
Langmuir ; 36(14): 3970-3980, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32207953

RESUMEN

Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...