RESUMEN
Background: Patients with chronic lymphocytic leukemia (CLL) have a higher risk of developing other malignancies (OMs) compared to the general population. However, the impact of CLL-related risk factors and CLL-directed treatment is still unclear and represents the focus of this work. Methods: We conducted a retrospective international multicenter study to assess the incidence of OMs and detect potential risk factors in 19,705 patients with CLL, small lymphocytic lymphoma, or high-count CLL-like monoclonal B-cell lymphocytosis, diagnosed between 2000 and 2016. Data collection took place between October 2020 and March 2022. Findings: In 129,254 years of follow-up after CLL diagnosis, 3513 OMs were diagnosed (27.2 OMs/1000 person-years). The most common hematological OMs were Richter transformation, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Non-melanoma skin (NMSC) and prostate cancers were the most common solid tumors (STs).The only predictor for MDS and AML development was treatment with fludarabine and cyclophosphamide with/without rituximab (FC ± R) (OR = 3.7; 95% CI = 2.79-4.91; p < 0.001). STs were more frequent in males and patients with unmutated immunoglobulin heavy variable genes (OR = 1.77; 95% CI = 1.49-2.11; p < 0.001/OR = 1.89; 95% CI = 1.6-2.24; p < 0.001).CLL-directed treatment was associated with non-melanoma skin and prostate cancers (OR = 1.8; 95% CI = 1.36-2.41; p < 0.001/OR = 2.11; 95% CI = 1.12-3.97; p = 0.021). In contrast, breast cancers were more frequent in untreated patients (OR = 0.17; 95% CI = 0.08-0.33; p < 0.001).Patients with CLL and an OM had inferior overall survival (OS) than those without. AML and MDS conferred the worst OS (p < 0.001). Interpretation: OMs in CLL impact on OS. Treatment for CLL increased the risk for AML/MDS, prostate cancer, and NMSC. FCR was associated with increased risk for AML/MDS. Funding: AbbVie, and EU/EFPIAInnovative Medicines Initiative Joint Undertaking HARMONY grant n° 116026.
RESUMEN
Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Pronóstico , Factor 88 de Diferenciación Mieloide/genética , Mutación , FenotipoRESUMEN
Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive clinical courses because somatic IGHV mutations have altered BCR structures and no longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B cells. However, the latter assumption has not been confirmed in a large patient cohort. We tried to address the latter by measuring the relative numbers of replacement (R) mutations that lead to non-conservative amino acid changes (Rnc) to the combined numbers of conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change amino acids, "(S+Rc) to Rnc IGHV mutation ratio". When comparing time-to-first-treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even after matching groups for equal numbers of samples and identical numbers of mutations per sample. Thus, BCR structural change might not be the main reason for better outcomes for M-CLL. Since the total number of IGHV mutations associated better with longer TTFT, better clinical courses appear due to the biologic state of a B cell having undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient cohorts will be needed to definitively answer this question.
RESUMEN
The somatic hypermutation (SHM) status of the clonotypic immunoglobulin heavy variable (IGHV) gene is a critical biomarker for assessing the prognosis of patients with chronic lymphocytic leukemia (CLL). Importantly, independent studies have documented that IGHV SHM status is also a predictor of responses to therapy, including both chemoimmunotherapy (CIT) and novel, targeted agents. Moreover, immunogenetic analysis in CLL has revealed that different patients may express (quasi)identical, stereotyped B cell receptor immunoglobulin (BcR IG) and are classified into subsets based on this common feature. Patients in certain stereotyped subsets display consistent biology, clinical presentation, and outcome that are distinct from other patients, even with concordant IGHV gene SHM status. All of the above highlights the relevance of immunogenetic analysis in CLL, which is considered a cornerstone for accurate risk stratification and clinical decision making. Recommendations for robust immunogenetic analysis exist thanks to dedicated efforts by ERIC, the European Research Initiative on CLL, covering all test phases, from the pre-analytical and analytical to the post-analytical, pertaining to the analysis, interpretation, and reporting of the findings. That said, these recommendations apply to Sanger sequencing, which is increasingly being superseded by next generation sequencing (NGS), further underscoring the need for an update. Here, we present an overview of the clinical utility of immunogenetics in CLL and update our analytical recommendations with the aim to assist in the refined management of patients with CLL.
Asunto(s)
Genes de Inmunoglobulinas , Leucemia Linfocítica Crónica de Células B , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Receptores de Antígenos de Linfocitos B/genéticaRESUMEN
Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Aberraciones Cromosómicas , Genoma Humano , Genómica , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Estudios RetrospectivosRESUMEN
Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Reproducibilidad de los ResultadosRESUMEN
Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.
Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/genética , Frecuencia de los Genes , Reordenamiento Génico , Humanos , Hipermutación Somática de InmunoglobulinaRESUMEN
Despite advances in chronic lymphocytic leukaemia (CLL) treatment, globally chemotherapy remains a central treatment modality, with chemotherapy trials representing an invaluable resource to explore disease-related/genetic features contributing to long-term outcomes. In 499 LRF CLL4 cases, a trial with >12 years follow-up, we employed targeted resequencing of 22 genes, identifying 623 mutations. After background mutation rate correction, 11/22 genes were recurrently mutated at frequencies between 3.6% (NFKBIE) and 24% (SF3B1). Mutations beyond Sanger resolution (<12% VAF) were observed in all genes, with KRAS mutations principally composed of these low VAF variants. Firstly, employing orthogonal approaches to confirm <12% VAF TP53 mutations, we assessed the clinical impact of TP53 clonal architecture. Whilst ≥ 12% VAF TP53mut cases were associated with reduced PFS and OS, we could not demonstrate a difference between <12% VAF TP53 mutations and either wild type or ≥12% VAF TP53mut cases. Secondly, we identified biallelic BIRC3 lesions (mutation and deletion) as an independent marker of inferior PFS and OS. Finally, we observed that mutated MAPK-ERK genes were independent markers of poor OS in multivariate survival analysis. In conclusion, our study supports using targeted resequencing of expanded gene panels to elucidate the prognostic impact of gene mutations.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Biomarcadores de Tumor/genética , Leucemia Linfocítica Crónica de Células B/mortalidad , Sistema de Señalización de MAP Quinasas/genética , Mutación , Proteína p53 Supresora de Tumor/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios de Cohortes , Ciclofosfamida/administración & dosificación , Quinasas MAP Reguladas por Señal Extracelular/genética , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Pronóstico , Tasa de Supervivencia , Vidarabina/administración & dosificación , Vidarabina/análogos & derivadosRESUMEN
Chronic lymphocytic leukemia patients with mutated immunoglobulin heavy-chain genes (IGHV-M), particularly those lacking poor-risk genomic lesions, often respond well to chemoimmunotherapy (CIT). DNA methylation profiling can subdivide early-stage patients into naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL), and intermediate CLL (i-CLL), with differing times to first treatment and overall survival. However, whether DNA methylation can identify patients destined to respond favorably to CIT has not been ascertained. We classified treatment-naive patients (n = 605) from 3 UK chemo and CIT clinical trials into the 3 epigenetic subgroups, using pyrosequencing and microarray analysis, and performed expansive survival analysis. The n-CLL, i-CLL, and m-CLL signatures were found in 80% (n = 245/305), 17% (53/305), and 2% (7/305) of IGHV-unmutated (IGHV-U) cases, respectively, and in 9%, (19/216), 50% (108/216), and 41% (89/216) of IGHV-M cases, respectively. Multivariate Cox proportional analysis identified m-CLL as an independent prognostic factor for overall survival (hazard ratio [HR], 0.46; 95% confidence interval [CI], 0.24-0.87; P = .018) in CLL4, and for progression-free survival (HR, 0.25; 95% CI, 0.10-0.57; P = .002) in ARCTIC and ADMIRE patients. The analysis of epigenetic subgroups in patients entered into 3 first-line UK CLL trials identifies m-CLL as an independent marker of prolonged survival and may aid in the identification of patients destined to demonstrate prolonged survival after CIT.
Asunto(s)
Metilación de ADN , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Adulto , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Biología Computacional/métodos , Epigénesis Genética , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/mortalidad , Leucemia Linfocítica Crónica de Células B/terapia , Masculino , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos ProporcionalesRESUMEN
Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.
Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Citogenética/métodos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/mortalidad , Mutación , Anciano , Femenino , Estudios de Seguimiento , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Hipermutación Somática de Inmunoglobulina/genética , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Genes de Inmunoglobulinas/genética , Linfoma de Células B de la Zona Marginal/genética , Regiones Determinantes de Complementariedad/genética , Reordenamiento Génico de Linfocito B/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Humanos , Región Variable de Inmunoglobulina/genética , Mutación/genética , Receptores de Antígenos de Linfocitos B/genética , Microambiente TumoralRESUMEN
Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.
Asunto(s)
Biomarcadores de Tumor , Susceptibilidad a Enfermedades , Leucemia Linfocítica Crónica de Células B/etiología , Leucemia Linfocítica Crónica de Células B/mortalidad , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Femenino , Humanos , Inmunogenética , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/terapia , Masculino , Mutación , Estadificación de Neoplasias , Pronóstico , Tiempo de TratamientoRESUMEN
Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.