Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36992420

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.


Asunto(s)
Infecciones por Citomegalovirus , Cardiopatías , Muromegalovirus , Miocarditis , Humanos , Animales , Ratones , Muromegalovirus/fisiología , Receptores de Quimiocina/genética , Proteínas Virales/metabolismo , Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Front Immunol ; 13: 1047299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569845

RESUMEN

Introduction: Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8+ T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33stop), which lacks M33, an MCMV chemokine receptor homolog. M33 is essential for normal reactivation from latency and this was leveraged to determine whether reactivation in vivo contributes to T cell memory inflation. Methods: Mice were infected with wild-type or mutant MCMV and T cell responses were analyzed by flow cytometry at acute and latent time points. Ex vivo reactivation and cytotoxicity assays were carried out to further investigate immunity and virus replication. Quantitative reverse-transcriptase polymerase chain reaction (q-RTPCR) was used to examine gene expression during reactivation. MHC expression on infected cells was analyzed by flow cytometry. Finally, T cells were depleted from latently-infected B cell-deficient mice to examine the in vivo difference in reactivation between wild-type and ΔM33stop. Results: We found that ΔM33stop triggers memory inflation specific for peptides derived from the immediate-early protein IE1 but not the early protein m164, in contrast to wild-type MCMV. During ex vivo reactivation, gene expression in DM33stop-infected lung tissues was delayed compared to wild-type virus. Normal gene expression was partially rescued by substitution of the HCMV US28 open reading frame in place of the M33 gene. In vivo depletion of T cells in immunoglobulin heavy chain-knockout mice resulted in reactivation of wild-type MCMV, but not ΔM33stop, confirming the role of M33 during reactivation from latency. Further, we found that M33 induces isotype-specific downregulation of MHC class I on the cell surface suggesting previously unappreciated roles in immune evasion. Discussion: Our results indicate that M33 is more polyfunctional than previously appreciated. In addition to its role in reactivation, which had been previously described, we found that M33 alters viral gene expression, host T cell memory inflation, and MHC class I expression. US28 was able to partially complement most functions of M33, suggesting that its role in HCMV infection may be similarly pleotropic.


Asunto(s)
Infecciones por Citomegalovirus , Evasión Inmune , Humanos , Animales , Ratones , Latencia del Virus/fisiología , Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/genética
3.
PLoS Pathog ; 12(12): e1006069, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27926941

RESUMEN

Cytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted. Subcapsular sinus macrophages (SSM) captured murine CMV (MCMV) from the afferent lymph and poorly supported its replication. Blocking the type I interferon (IFN-I) receptor (IFNAR) increased MCMV infection of SSM and of the fibroblastic reticular cells (FRC) lining the subcapsular sinus, and accelerated viral spread to the spleen. Little splenic virus derived from SSM, arguing that they mainly induce an anti-viral state in the otherwise susceptible FRC. NK cells also limited infection, killing infected FRC and causing tissue damage. They acted independently of IFN-I, as IFNAR blockade increased NK cell recruitment, and NK cell depletion increased infection in IFNAR-blocked mice. Thus SSM restricted MCMV infection primarily though IFN-I, with NK cells providing a second line of defence. The capacity of innate immunity to restrict MCMV escape from the subcapsular sinus suggested that enhancing its recruitment might improve infection control.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/inmunología , Animales , Ganglios Linfáticos/virología , Macrófagos/virología , Ratones , Muromegalovirus/inmunología
4.
J Virol ; 83(15): 7590-601, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19439478

RESUMEN

M33, encoded by murine cytomegalovirus (MCMV), is a member of the UL33 homolog G-protein-coupled receptor (GPCR) family and is conserved across all the betaherpesviruses. Infection of mice with recombinant viruses lacking M33 or containing specific signaling domain mutations in M33 results in significantly diminished MCMV infection of the salivary glands. To determine the role of M33 in viral dissemination and/or infection in other tissues, viral infection with wild-type K181 virus and an M33 mutant virus, DeltaM33B(T2), was characterized using two different routes of inoculation. Following both intraperitoneal (i.p.) and intranasal (i.n.) inoculation, M33 was attenuated for infection of the spleen and pancreas as early as 7 days after infection. Following i.p. inoculation, DeltaM33B(T2) exhibited a severe defect in latency as measured by a diminished capacity to reactivate from spleens and lungs in reactivation assays (P < 0.001). Subsequent PCR analysis revealed markedly reduced DeltaM33B(T2) viral DNA levels in the latently infected spleens, lungs, and bone marrow. Following i.n. inoculation, latent DeltaM33B(T2) viral DNA was significantly reduced in the spleen and, in agreement with results from i.p. inoculation, did not reactivate from the spleen (P < 0.001). Furthermore, in vivo complementation of DeltaM33B(T2) virus replication and/or dissemination to the salivary glands and pancreas was achieved by coinfection with wild-type virus. Overall, our data suggest a critical tissue-specific role for M33 during infection in the salivary glands, spleen, and pancreas but not the lungs. Our data suggest that M33 contributes to the efficient establishment or maintenance of long-term latent MCMV infection.


Asunto(s)
Infecciones por Herpesviridae/virología , Muromegalovirus/fisiología , Receptores de Quimiocina/metabolismo , Proteínas Virales/metabolismo , Latencia del Virus , Replicación Viral , Animales , Femenino , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/genética , Células 3T3 NIH , Especificidad de Órganos , Páncreas/virología , Receptores de Quimiocina/genética , Glándulas Salivales/virología , Bazo/virología , Proteínas Virales/genética
5.
J Gen Virol ; 88(Pt 9): 2450-2462, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17698654

RESUMEN

Equid herpesvirus 2 (EHV-2), in common with other members of the subfamily Gammaherpesvirinae, encodes homologues of cellular seven-transmembrane receptors (7TMR), namely open reading frames (ORFs) E1, 74 and E6, which each show some similarity to cellular chemokine receptors. Whereas ORF74 and E6 are members of gammaherpesvirus-conserved 7TMR gene families, E1 is currently unique to EHV-2. To investigate their genetic variability, EHV-2 7TMRs from a panel of equine gammaherpesvirus isolates were sequenced. A region of gB was sequenced to provide comparative sequence data. Phylogenetic analysis revealed six 'genogroups' for E1 and four for ORF74, which exhibited approximately 10-38 and 11-27 % amino acid difference between groups, respectively. In contrast, E6 was highly conserved, with two genogroups identified. The greatest variation was observed within the N-terminal domains and other extracellular regions. Nevertheless, analysis of the number of non-synonymous (d(N)) and synonymous (d(S)) substitutions per site generally supported the hypothesis that the 7TMRs are under negative selective pressure to retain functionally important residues, although some site-specific positive selection (d(N)>d(S)) was also observed. Collectively, these data are consistent with transmembrane and cytoplasmic domains being less tolerant of mutations with adverse effects upon function. Finally, there was no evidence for genetic linkage between the different gB, E1, ORF74 and E6 genotypes, suggesting frequent intergenic recombination between different EHV-2 strains.


Asunto(s)
Sistemas de Lectura Abierta , Receptores de Quimiocina/genética , Rhadinovirus/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Técnicas de Cultivo de Célula , Secuencia Conservada , Cartilla de ADN , ADN Viral/genética , ADN Viral/aislamiento & purificación , Variación Genética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Rhadinovirus/clasificación , Rhadinovirus/aislamiento & purificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...