Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325014

RESUMEN

PURPOSE: The GARNER study investigated fibroblast growth factor receptor (FGFR) alteration (ALT) frequency and the clinical outcome relationship with Bacillus Calmette-Guérin (BCG) treatment in high-risk non-muscle invasive bladder cancer (HR-NMIBC). An FGFR predictive response signature (FGFR-PRS) was discovered that identifies patients with an activated FGFR pathway who could potentially benefit from FGFR-targeted therapy beyond those who are FGFR ALT (+). EXPERIMENTAL DESIGN: Pre-treatment tumor samples and clinical data were analyzed from 582 BCG-treated HR-NMIBC patients. FGFR-PRS was discovered using a separate BC dataset and applied to the GARNER and other BC cohorts. FGFR-PRS was also applied to in vitro data from UC cell lines treated with FGFR-active agents. RESULTS: 31% of pre-treatment GARNER HR-NMIBC tumors were FGFR ALT (+) but this was not significantly associated with BCG response. For the subset of patients with paired pre- and post-BCG treatment samples, nearly one-third pre-treatment ALT (+) patients were ALT (-) post-treatment. FGFR-PRS identified patients with an activated FGFR pathway and identified approximately 2-fold additional patients compared to ALT status alone, and this increase was similar across tumor stage. A positive relationship between tumor growth inhibition and FGFR-PRS score was shown in BC in vitro models treated with FGFR-active agents. CONCLUSIONS: These data provide support for FGFR-targeted therapy use in FGFR ALT (+) HR-NMIBC and describe tumors with shared FGFR pathway-activated biology that are FGFR ALT (-) but FGFR-PRS (+). The latter suggests a broader potential patient population for FGFR-targeted therapy, which will require subsequent validation in patients treated with FGFR-targeted therapy.

2.
J Immunol ; 213(1): 29-39, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767437

RESUMEN

High-dose (HD) IL-2 was the first immuno-oncology agent approved for treating advanced renal cell carcinoma and metastatic melanoma, but its use was limited because of substantial toxicities. Multiple next-generation IL-2 agents are being developed to improve tolerability. However, a knowledge gap still exists for the genomic markers that define the target pharmacology for HD IL-2 itself. In this retrospective observational study, we collected PBMC samples from 23 patients with metastatic renal cell carcinoma who were treated with HD IL-2 between 2009 and 2015. We previously reported the results of flow cytometry analyses. In this study, we report the results of our RNA-sequencing immunogenomic survey, which was performed on bulk PBMC samples from immediately before (day 1), during (day 3), and after treatment (day 5) in cycle 1 and/or cycle 2 of the first course of HD IL-2. As part of a detailed analysis of immunogenomic response to HD IL-2 treatment, we analyzed the changes in individual genes and immune gene signatures. By day 3, most lymphoid cell types had transiently decreased, whereas myeloid transcripts increased. Although most genes and/or signatures generally returned to pretreatment expression levels by day 5, certain ones representative of B cell, NK cell, and T cell proliferation and effector functions continued to increase, along with B cell (but not T cell) oligoclonal expansion. Regulatory T cells progressively expanded during and after treatment. They showed strong negative correlation with myeloid effector cells. This detailed RNA-sequencing immunogenomic survey of IL-2 pharmacology complements results of prior flow cytometry analyses. These data provide valuable pharmacological context for assessing PBMC gene expression data from patients dosed with IL-2-related compounds that are currently in development.


Asunto(s)
Carcinoma de Células Renales , Inmunoterapia , Interleucina-2 , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/genética , Interleucina-2/administración & dosificación , Interleucina-2/genética , Neoplasias Renales/inmunología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Femenino , Inmunoterapia/métodos , Anciano , Estudios Retrospectivos , Adulto , Leucocitos Mononucleares/inmunología , Metástasis de la Neoplasia
3.
Clin Cancer Res ; 29(16): 3203-3213, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233991

RESUMEN

PURPOSE: The Piedmont study is a prospectively designed retrospective evaluation of a new 48-gene antifolate response signature (AF-PRS) in patients with locally advanced/metastatic nonsquamous (NS) non-small cell lung cancer (NSCLC) treated with pemetrexed-containing platinum doublet chemotherapy (PMX-PDC). The study tested the hypothesis that AF-PRS identifies patients with NS-NSCLC who have a higher likelihood of responding positively to PMX-PDC. The goal was to gather clinical evidence supporting AF-PRS as a potential diagnostic test. EXPERIMENTAL DESIGN: Residual pretreatment FFPE tumor samples and clinical data were analyzed from 105 patients treated with first-line (1L) PMX-PDC. Ninety-five patients had sufficient RNA sequencing (RNA-seq) data quality and clinical annotation for inclusion in the analysis. Associations between AF-PRS status and associate genes and outcome measures including progression-free survival (PFS) and clinical response were evaluated. RESULTS: Overall, 53% of patients were AF-PRS(+), which was associated with extended PFS, but not overall survival, versus AF-PRS(-) (16.6 months vs. 6.6 months; P = 0.025). In patients who were stage I to III patients at the time of treatment, PFS was further extended in AF-PRS(+) versus AF-PRS(-) (36.2 months vs. 9.3 months; P = 0.03). Complete response (CR) to therapy was noted in 14 of 95 patients. AF-PRS(+) preferentially selected a majority (79%) of CRs, which were evenly split between patients stage I to III (six of seven) and stage IV (five of seven) at the time of treatment. CONCLUSIONS: AF-PRS identified a significant population of patients with extended PFS and/or clinical response following PMX-PDC treatment. AF-PRS may be a useful diagnostic test for patients indicated for systemic chemotherapy, especially when determining the optimal PDC regimen for locally advanced disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Antagonistas del Ácido Fólico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Pemetrexed , Platino (Metal)/uso terapéutico , Antagonistas del Ácido Fólico/uso terapéutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
4.
Genetics ; 222(4)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36218393

RESUMEN

Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Mucosa Intestinal , Proteínas de Pez Cebra , Pez Cebra , Animales , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/fisiología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Intestinos/embriología , Intestinos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
5.
Cell Mol Gastroenterol Hepatol ; 14(2): 465-493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35533983

RESUMEN

BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.


Asunto(s)
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Duodeno/metabolismo , Duodeno/microbiología , Ácidos Grasos/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lípidos , Ratones
6.
Nat Rev Gastroenterol Hepatol ; 18(1): 7-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33024279

RESUMEN

The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.


Asunto(s)
Diferenciación Celular/genética , Microambiente Celular/fisiología , Microbioma Gastrointestinal , Mucosa Intestinal/fisiología , Animales , Diferenciación Celular/fisiología , Microambiente Celular/genética , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Intestinos/microbiología , Intestinos/fisiología , Ratones , Modelos Animales , Nutrigenómica , Fenómenos Fisiológicos de la Nutrición/genética , Fenómenos Fisiológicos de la Nutrición/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología , Pez Cebra
7.
Chem Senses ; 44(8): 615-630, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31403159

RESUMEN

Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.


Asunto(s)
Microbiota/fisiología , Proteínas del Tejido Nervioso/genética , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Proteínas Represoras/genética , Olfato/genética , Animales , Línea Celular , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/microbiología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/microbiología , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Proteínas Represoras/metabolismo , Simbiosis/fisiología , Pez Cebra
8.
Nutrition ; 59: 29-36, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30415160

RESUMEN

Recent medical history has largely viewed our bacterial symbionts as pathogens to be eradicated rather than as essential partners in optimal health. However, one of the most exciting scientific advances in recent years has been the realization that commensal microorganisms (our microbiome) play vital roles in human physiology in nutrition, vitamin synthesis, drug metabolism, protection against infection, and recovery from illness. Recent data show that loss of "health-promoting" microbes and overgrowth of pathogenic bacteria (dysbiosis) in patients in the intensive care unit (ICU) appears to contribute to nosocomial infections, sepsis, and poor outcomes. Dysbiosis results from many factors, including ubiquitous antibiotic use and altered nutrition delivery in illness. Despite modern antibiotic therapy, infections and mortality from often multidrug-resistant organisms are increasing. This raises the question of whether restoration of a healthy microbiome via probiotics or synbiotics (probiotic and prebiotic combinations) to intervene on ubiquitous ICU dysbiosis would be an optimal intervention in critical illness to prevent infection and to improve recovery. This review will discuss recent innovative experimental data illuminating mechanistic pathways by which probiotics and synbiotics may provide clinical benefit. Furthermore, a review of recent clinical data demonstrating that probiotics and synbiotics can reduce complications in ICU and other populations will be undertaken. Overall, growing data for probiotic and symbiotic therapy reveal a need for definitive clinical trials of these therapies, as recently performed in healthy neonates. Future studies should target administration of probiotics and synbiotics with known mechanistic benefits to improve patient outcomes. Optimally, future probiotic and symbiotic studies will be conducted using microbiome signatures to characterize actual ICU dysbiosis and determine, and perhaps even personalize, ideal probiotic and symbiotic therapies.


Asunto(s)
Cuidados Críticos/métodos , Enfermedad Crítica/terapia , Disbiosis/terapia , Probióticos/uso terapéutico , Simbióticos/administración & dosificación , Disbiosis/microbiología , Humanos , Unidades de Cuidados Intensivos
9.
Zebrafish ; 15(2): 202-205, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29173090

RESUMEN

The completion of the zebrafish genome sequence and advances in miniaturization and multiplexing were essential to the creation of techniques such as RNA-seq, ChIP-seq, and high-throughput behavioral and chemical screens. Multiplexing was also instrumental in the recent enhancement of the classic yeast one-hybrid interaction techniques to provide unprecedented discovery capabilities for protein-DNA interactions. Unfortunately its use for zebrafish research is currently hampered by the lack of an open reading frame (ORF) clone collection. As a first step toward a complete collection, we describe a small library of transcriptional regulatory proteins comprising 142 ORFs and its potential applications.


Asunto(s)
Redes Reguladoras de Genes , Sistemas de Lectura Abierta , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Clonación Molecular , Biología Computacional , Regulación de la Expresión Génica , Biblioteca de Genes , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Genome Res ; 27(7): 1195-1206, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28385711

RESUMEN

Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.


Asunto(s)
Microbioma Gastrointestinal , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/biosíntesis , Enfermedades Inflamatorias del Intestino , Proteínas de Pez Cebra/biosíntesis , Pez Cebra , Animales , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Especificidad de la Especie , Pez Cebra/metabolismo , Pez Cebra/microbiología
11.
Subcell Biochem ; 59: 271-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22374094

RESUMEN

An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Aparato de Golgi/fisiología , Metabolismo de los Lípidos , Fosfatos de Fosfatidilinositol/biosíntesis , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Diglicéridos/metabolismo , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
12.
Methods Cell Biol ; 108: 249-302, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22325607

RESUMEN

The minor cellular lipid phosphoinositides represents key regulators of diverse intracellular processes such as signal transduction at membrane-cytosol interface, regulation of membrane trafficking, cytoskeleton organization, nuclear events and the permeability, and transport functions of the membrane. The heterogeneous subcellular localization of phosphoinositides and their multiple and co-operative membrane-protein recognition mechanisms contribute to a "coincidence detection code" for the membrane-cytosol interactions in eukaryotic signaling networks. Such a "coincidence detection code" relies on the fine coordination of the broader lipid metabolism and organization, and their coupling to dedicated physiological processes. The phosphatidylinositol transfer proteins (PITPs) play a key regulatory role, essentially as "coincidence detectors" or "nanoreactors" in this "signal detection code" that spatially and temporally coordinate the diverse aspects of lipid metabolome with phosphoinositide signaling to effect various cellular functions. The integral role of PITPs in the highly conserved eukaryotic signal transduction strategy is amply demonstrated by the mammalian diseases associated with the derangements in the function of these proteins, to stress response and developmental regulation in plants, to fungal dimorphism and pathogenicity, to membrane trafficking in yeast and higher eukaryotes. The study of PITPs is fundamental to understanding of how the phosphoinositide signal transduction network is regulated and integrated to the larger lipid metabolome in diverse cellular processes. To comprehend how the PITPs integrate phosphoinositide signaling to broader lipid metabolome in diverse cellular processes, it is necessary to devise methods that can correlate the biochemical properties of these non-enzymatic proteins to biologically relevant functional insights. In this chapter, we present combinatorial approaches that primarily employ genetics and structural tools to assess the functional role of PITPs in yeast, plant and mammalian systems. An elaborate discussion on the various genetic models devised for interpreting the functional role of PITPs in relation to their operational assays has been included. We also describe the structural and biophysical methods that have advanced our understanding of how these proteins operate as "nanoreactor" molecules.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos/genética , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Pruebas de Enzimas/métodos , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente , Microsomas Hepáticos/química , Modelos Biológicos , Modelos Moleculares , Organismos Modificados Genéticamente , Fosfatidilinositoles/química , Fosfatidilinositoles/aislamiento & purificación , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica , Ensayo de Unión Radioligante/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Coloración y Etiquetado , Resonancia por Plasmón de Superficie , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
13.
J Biol Chem ; 287(9): 6539-50, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22215675

RESUMEN

WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the ß-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor ß-catenin, a key control point in the WNT/ß-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of ß-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antioxidantes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Tumor de Wilms/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Unión Competitiva/fisiología , Cromosomas Humanos X/genética , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Fosforilación/fisiología , ARN Interferente Pequeño/genética , Serina/metabolismo , Activación Transcripcional/fisiología , Proteínas Supresoras de Tumor/genética , Ubiquitinación/fisiología , Tumor de Wilms/genética , Proteínas con Repetición de beta-Transducina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...