Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920591

RESUMEN

The overall 5-year survival rate of ovarian cancer (OC) is generally low as the disease is often diagnosed at an advanced stage of progression. To save lives, OC must be identified in its early stages when treatment is most effective. Early-stage OC causes the upregulation of lysophosphatidic acid (LPA), making the molecule a promising biomarker for early-stage detection. An LPA assay can additionally stage the disease since LPA levels increase with OC progression. This work presents two methods that demonstrate the prospective application for detecting LPA: the electromagnetic piezoelectric acoustic sensor (EMPAS) and a chemiluminescence-based iron oxide nanoparticle (IONP) approach. Both methods incorporate the protein complex gelsolin-actin, which enables testing for detection of the biomarker as the binding of LPA to the complex results in the separation of gelsolin from actin. The EMPAS was characterized with contact angle goniometry and atomic force microscopy, while gelsolin-actin-functionalized IONPs were characterized with transmission electron microscopy and Fourier transform infrared spectroscopy. In addition to characterization, LPA detection was demonstrated as a proof-of-concept in Milli-Q water, buffer, or human serum, highlighting various LPA assays that can be developed for the early-stage detection of OC.


Asunto(s)
Biomarcadores de Tumor , Lisofosfolípidos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Técnicas Biosensibles , Gelsolina , Actinas , Detección Precoz del Cáncer
2.
Biomolecules ; 13(9)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759826

RESUMEN

Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP2-binding domain. Thus, the molecular-level detail of the mechanism of LPA binding is poorly understood. Here, we model LPA binding to the PIP2-binding domain of gelsolin in the gelsolin-actin complex through extensive ten-microsecond atomistic molecular dynamics (MD) simulations. We predict that LPA binding causes a local conformational rearrangement due to LPA interactions with both gelsolin and actin residues. These conformational changes are a result of the amphipathic nature of LPA, where the anionic phosphate, polar glycerol and ester groups, and lipophilic aliphatic tail mediate LPA binding via charged electrostatic, hydrogen bonding, and van der Waals interactions. The negatively-charged LPA headgroup binds to the PIP2-binding domain of gelsolin-actin while its hydrophobic tail is inserted into actin, creating a strong LPA-insertion pocket that weakens the gelsolin-actin interface. The computed structure, dynamics, and energetics of the ternary gelsolin-LPA-actin complex confirms that a quantitative OC assay is possible based on LPA-triggered actin release from the gelsolin-actin complex.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Ováricas , Femenino , Humanos , Actinas , Gelsolina , Lisofosfolípidos , Neoplasias Ováricas/diagnóstico , Electricidad Estática , Interacciones Hidrofóbicas e Hidrofílicas
3.
Biosensors (Basel) ; 13(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37366979

RESUMEN

Contamination of food by pathogens can pose a serious risk to health. Therefore, monitoring for the presence of pathogens is critical to identify and regulate microbiological contamination of food. In this work, an aptasensor based on a thickness shear mode acoustic method (TSM) with dissipation monitoring was developed to detect and quantify Staphylococcus aureus directly in whole UHT cow's milk. The frequency variation and dissipation data demonstrated the correct immobilization of the components. The analysis of viscoelastic properties suggests that DNA aptamers bind to the surface in a non-dense manner, which favors the binding with bacteria. The aptasensor demonstrated high sensitivity and was able to detect S. aureus in milk with a 33 CFU/mL limit of detection. Analysis was successful in milk due to the sensor's antifouling properties, which is based on 3-dithiothreitol propanoic acid (DTTCOOH) antifouling thiol linker. Compared to bare and modified (dithiothreitol (DTT), 11-mercaptoundecanoic acid (MUA), and 1-undecanethiol (UDT)) quartz crystals, the sensitivity of the sensor's antifouling in milk improved by about 82-96%. The excellent sensitivity and ability to detect and quantify S. aureus in whole UHT cow's milk demonstrates that the system is applicable for rapid and efficient analysis of milk safety.


Asunto(s)
Aptámeros de Nucleótidos , Incrustaciones Biológicas , Técnicas Biosensibles , Animales , Bovinos , Femenino , Staphylococcus aureus , Leche/química , Incrustaciones Biológicas/prevención & control , Ditiotreitol/análisis , Alérgenos/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección
4.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35270999

RESUMEN

Milk is a significant foodstuff around the world, being produced and consumed in large quantities. The safe consumption of milk requires that the liquid has an acceptably low level of microbial contamination and has not been subjected to spoiling. Bacterial safety limits in milk vary by country but are typically in the thousands per mL of sample. To rapidly determine if samples contain an unsafe level of bacteria, an aptamer-based sensor specific to Escherichia coli bacteria was developed. The sensor is based on an ultra-high frequency electromagnetic piezoelectric acoustic sensor device (EMPAS), with the aptamer being covalently bound to the sensor surface by the anti-fouling linker, MEG-Cl. The sensor is capable of the selective measurement of E. coli in PBS and in cow's milk samples down to limits of detection of 35 and 8 CFU/mL, respectively, which is well below the safe limits for commercial milk products. This sensing system shows great promise for the milk industry for the purpose of rapid verification of product safety.


Asunto(s)
Incrustaciones Biológicas , Leche , Animales , Bacterias , Incrustaciones Biológicas/prevención & control , Escherichia coli , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...