Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(35): eado5424, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39196941

RESUMEN

DNA methylation is extensively reconfigured during development, but the functional significance and cell type-specific dependencies of DNA demethylation in lineage specification remain poorly understood. Here, we demonstrate that developmental DNA demethylation, driven by ten-eleven translocation 1/2/3 (TET1/2/3) enzymes, is essential for establishment of neural stem cell (NSC) identity and gliogenic potential. We find that loss of all three TETs during NSC specification is dispensable for neural induction and neuronal differentiation but critical for astrocyte and oligodendrocyte formation, demonstrating a selective loss of glial competence. Mechanistically, TET-mediated demethylation was essential for commissioning neural-specific enhancers in proximity to master neurodevelopmental and glial transcription factor genes and for induction of these genes. Consistently, loss of all three TETs in embryonic NSCs in mice compromised glial gene expression and corticogenesis. Thus, TET-dependent developmental demethylation is an essential regulatory mechanism for neural enhancer commissioning during NSC specification and is a cell-intrinsic determinant of NSC identity and gliogenic potential.


Asunto(s)
Diferenciación Celular , Desmetilación del ADN , Células-Madre Neurales , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Neuroglía/metabolismo , Neuroglía/citología , Neurogénesis , Regulación del Desarrollo de la Expresión Génica , Metilación de ADN , Elementos de Facilitación Genéticos , Dioxigenasas/metabolismo , Neuronas/metabolismo , Neuronas/citología
2.
Commun Biol ; 7(1): 415, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580843

RESUMEN

The ten-eleven-translocation family of proteins (TET1/2/3) are epigenetic regulators of gene expression. They regulate genes by promoting DNA demethylation (i.e., catalytic activity) and by partnering with regulatory proteins (i.e., non-catalytic functions). Unlike Tet1 and Tet2, Tet3 is not expressed in mouse embryonic stem cells (ESCs) but is induced upon ESC differentiation. However, the significance of its dual roles in lineage specification is less defined. By generating TET3 catalytic-mutant (Tet3m/m) and knockout (Tet3-/-) mouse ESCs and differentiating them to neuroectoderm (NE), we identify distinct catalytic-dependent and independent roles of TET3 in NE specification. We find that the catalytic activity of TET3 is important for activation of neural genes while its non-catalytic functions are involved in suppressing mesodermal programs. Interestingly, the vast majority of differentially methylated regions (DMRs) in Tet3m/m and Tet3-/- NE cells are hypomethylated. The hypo-DMRs are associated to aberrantly upregulated genes while the hyper-DMRs are linked to downregulated neural genes. We find the maintenance methyltransferase Dnmt1 as a direct target of TET3, which is downregulated in TET3-deficient NE cells and may contribute to the increased DNA hypomethylation. Our findings establish that the catalytic-dependent and -independent roles of TET3 have distinct contributions to NE specification with potential implications in development.


Asunto(s)
Dioxigenasas , Animales , Ratones , Diferenciación Celular/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Placa Neural/metabolismo
3.
iScience ; 26(7): 107170, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456851

RESUMEN

Tet2 is a member of the Ten-eleven translocation (Tet1/2/3) family of enzymes and is expressed in embryonic stem cells (ESCs). It demethylates DNA (catalytic functions) and partners with chromatin modifiers (noncatalytic functions) to regulate genes. However, the significance of these functions in ESCs is less defined. Using Tet2 catalytic mutant (Tet2m/m) and knockout (Tet2-/-) ESCs, we identified Tet2 target genes regulated by its catalytic dependent versus independent roles. Tet2 was enriched at their active enhancers and promoters to demethylate them. We also identified the histone deacetylase component Sin3a as a Tet2 partner, co-localizing at promoters and active enhancers. Tet2 deficiency diminished Sin3a at these regions. Tet2 and Sin3a co-occupancy overlapped with Tet1. Combined loss of Tet1/2, but not of their catalytic activities, reduced Sin3a at active enhancers. These findings establish Tet2 catalytic and noncatalytic functions as regulators of DNA demethylation and Sin3a recruitment at active enhancers in ESCs.

4.
Exp Hematol ; 124: 45-55.e2, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225048

RESUMEN

TET2 is a member of the Ten-eleven translocation (Tet) family of DNA dioxygenases that regulate gene expression by promoting DNA demethylation (enzymatic activity) and partnering with chromatin regulatory complexes (nonenzymatic functions). TET2 is highly expressed in the hematopoietic lineage, where its molecular functions are the subject of continuous investigations because of the prevalence of TET2 mutations in hematologic malignancies. Previously, we have implicated Tet2 catalytic and noncatalytic functions in the regulation of myeloid and lymphoid lineages, respectively. However, the impact of these functions of Tet2 on hematopoiesis as the bone marrow ages remains unclear. Here, we conducted comparative transplantations and transcriptomic analyses of 3-, 6-, 9-, and 12-month-old Tet2 catalytic mutant (Mut) and knockout (KO) bone marrow. Tet2 Mut bone marrow of all ages exclusively caused hematopoietic disorders of the myeloid lineage. In contrast, young Tet2 KO bone marrow developed both lymphoid and myeloid diseases, whereas older Tet2 KO bone marrow predominantly elicited myeloid disorders with shorter latency than age-matched Tet2 Mut bone marrow. We identified robust gene dysregulation in Tet2 KO Lin- cells at 6 months that involved lymphoma and myelodysplastic syndrome and/or leukemia-causing genes, many of which were hypermethylated early in life. There was a shift from lymphoid to myeloid gene deregulation in Tet2 KO Lin- cells with age, underpinning the higher incidence of myeloid diseases. These findings expand on the dynamic regulation of bone marrow by Tet2 and show that its catalytic-dependent and -independent roles have distinct impacts on myeloid and lymphoid lineages with age.


Asunto(s)
Dioxigenasas , Enfermedades Hematológicas , Neoplasias Hematológicas , Síndromes Mielodisplásicos , Humanos , Lactante , Médula Ósea/metabolismo , Neoplasias Hematológicas/genética , Síndromes Mielodisplásicos/metabolismo , Hematopoyesis/genética , Enfermedades Hematológicas/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Mutación
5.
Cells ; 11(8)2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35456045

RESUMEN

Ten eleven translocation 1 (Tet1) is a DNA dioxygenase that promotes DNA demethylation by oxidizing 5-methylcytosine. It can also partner with chromatin-activating and repressive complexes to regulate gene expressions independent of its enzymatic activity. Tet1 is highly expressed in embryonic stem cells (ESCs) and regulates pluripotency and differentiation. However, its roles in ESC cell cycle progression and proliferation have not been investigated. Using a series of Tet1 catalytic mutant (Tet1m/m), knockout (Tet1-/-) and wild type (Tet1+/+) mouse ESCs (mESCs), we identified a non-catalytic role of Tet1 in the proper cell cycle progression and proliferation of mESCs. Tet1-/-, but not Tet1m/m, mESCs exhibited a significant reduction in proliferation and delayed progression through G1. We found that the cyclin-dependent kinase inhibitor p21/Cdkn1a was uniquely upregulated in Tet1-/- mESCs and its knockdown corrected the slow proliferation and delayed G1 progression. Mechanistically, we found that p21 was a direct target of Tet1. Tet1 occupancy at the p21 promoter overlapped with the repressive histone mark H3K27me3 as well as with the H3K27 trimethyl transferase PRC2 component Ezh2. A loss of Tet1, but not loss of its catalytic activity, significantly reduced the enrichment of Ezh2 and H3K27 trimethylation at the p21 promoter without affecting the DNA methylation levels. We also found that the proliferation defects of Tet1-/- mESCs were independent of their differentiation defects. Together, these findings established a non-catalytic role for Tet1 in suppressing p21 in mESCs to ensure a rapid G1-to-S progression, which is a key hallmark of ESC proliferation. It also established Tet1 as an epigenetic regulator of ESC proliferation in addition to its previously defined roles in ESC pluripotency and differentiation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Proto-Oncogénicas , Animales , Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Translocación Genética
6.
Stem Cell Res ; 61: 102770, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390758

RESUMEN

The Inhibitor of disheveled and axin (Idax) and its ortholog the Retinoid inducible nuclear factor (Rinf) are DNA binding proteins with nuclear and cytoplasmic functions. Rinf is expressed in embryonic stem cells (ESCs) where it regulates transcription of the Ten-eleven translocation (Tet) enzymes, promoting neural and suppressing mesendoderm/trophectoderm differentiation. Here, we find that Idax, which is not expressed in ESCs, is induced upon differentiation. Like Rinf, Idax facilitates neural and silences trophectodermal programs. Individual or combined loss of Idax and Rinf led to downregulation of neural and upregulation of trophectoderm markers during differentiation of ESCs to embryoid bodies as well as during directed differentiation of ESCs to neural progenitor cells (NPCs) and trophoblast-like cells. These defects resemble those of Tet-deficient ESCs. Consistently, Tet genes are direct targets of Idax and Rinf, and loss of Idax and Rinf led to downregulation of Tet enzymes during ESC differentiation to NPCs and trophoblast-like cells. While Idax and Rinf single and double knockout (DKO) mice were viable and overtly normal, DKO embryos had reduced expression of several NPC markers in embryonic forebrains and deregulated expression of selected trophoblast markers in placentas. NPCs derived from DKO forebrains had reduced self-renewal while DKO placentas had increased junctional zone and reduced labyrinth layers. Together, our findings establish Idax and Rinf as regulators of Tet enzymes for proper differentiation of ESCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Ratones , Células-Madre Neurales/metabolismo
7.
Sci Adv ; 8(9): eabm3470, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235365

RESUMEN

Ten-eleven translocation (Tet) enzymes promote DNA demethylation by oxidizing 5-methylcytosine. They are expressed during development and are essential for mouse gastrulation. However, their postgastrulation functions are not well established. We find that global or endothelial-specific loss of all three Tet enzymes immediately after gastrulation leads to reduced number of hematopoietic stem and progenitor cells (HSPCs) and lethality in mid-gestation mouse embryos. This is due to defects in specification of HSPCs from endothelial cells (ECs) that compromise primitive and definitive hematopoiesis. Mechanistically, loss of Tet enzymes in ECs led to hypermethylation and down-regulation of NFκB1 and master hematopoietic transcription factors (Gata1/2, Runx1, and Gfi1b). Restoring Tet catalytic activity or overexpression of these factors in Tet-deficient ECs rescued hematopoiesis defects. This establishes Tet enzymes as activators of hematopoiesis programs in ECs for specification of HSPCs during embryogenesis, which is distinct from their roles in adult hematopoiesis, with implications in deriving HSPCs from pluripotent cells.


Asunto(s)
Dioxigenasas , Animales , Diferenciación Celular/genética , Desmetilación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mamíferos/metabolismo , Ratones
8.
Nucleic Acids Res ; 50(6): 3169-3189, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35150568

RESUMEN

Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Células Madre Embrionarias , Proteínas Proto-Oncogénicas , Animales , Diferenciación Celular/genética , ADN/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Células Madre Embrionarias/metabolismo , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
9.
Dev Cell ; 56(22): 3052-3065.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34710357

RESUMEN

Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.


Asunto(s)
Alelos , Proteínas de Unión al Calcio/genética , Metilación de ADN/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Animales , Cromosomas/genética , Impresión Genómica/genética , Yoduro Peroxidasa/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética
10.
Front Cell Dev Biol ; 9: 645335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681230

RESUMEN

Studies of tissue-specific epigenomes have revealed 5-hydroxymethylcytosine (5hmC) to be a highly enriched and dynamic DNA modification in the metazoan nervous system, inspiring interest in the function of this epigenetic mark in neurodevelopment and brain function. 5hmC is generated by oxidation of 5-methylcytosine (5mC), a process catalyzed by the ten-eleven translocation (TET) enzymes. 5hmC serves not only as an intermediate in DNA demethylation but also as a stable epigenetic mark. Here, we review the known functions of 5hmC and TET enzymes in neural progenitor cell biology and embryonic and postnatal neurogenesis. We also discuss how TET enzymes and 5hmC regulate neuronal activity and brain function and highlight their implications in human neurodevelopmental and neurodegenerative disorders. Finally, we present outstanding questions in the field and envision new research directions into the roles of 5hmC and TET enzymes in neurodevelopment.

11.
Trends Cancer ; 7(7): 635-646, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33468438

RESUMEN

The mechanisms governing the methylome profile of tumor suppressors and oncogenes have expanded with the discovery of oxidized states of 5-methylcytosine (5mC). Ten-eleven translocation (TET) enzymes are a family of dioxygenases that iteratively catalyze 5mC oxidation and promote cytosine demethylation, thereby creating a dynamic global and local methylation landscape. While the catalytic function of TET enzymes during stem cell differentiation and development have been well studied, less is known about the multifaceted roles of TET enzymes during carcinogenesis. This review outlines several tiers of TET regulation and overviews how TET deregulation promotes a cancer phenotype. Defining the tissue-specific and context-dependent roles of TET enzymes will deepen our understanding of the epigenetic perturbations that promote or inhibit carcinogenesis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Ensayos Clínicos como Asunto , Metilación de ADN/efectos de los fármacos , Metilación de ADN/inmunología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Dioxigenasas/antagonistas & inhibidores , Dioxigenasas/genética , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Resultado del Tratamiento
12.
Cell Rep ; 28(10): 2480-2490.e4, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484061

RESUMEN

The Ten-eleven translocation (TET) enzymes regulate gene expression by promoting DNA demethylation and partnering with chromatin modifiers. TET2, a member of this family, is frequently mutated in hematological disorders. The contributions of TET2 in hematopoiesis have been attributed to its DNA demethylase activity, and the significance of its nonenzymatic functions has remained undefined. To dissect the catalytic and non-catalytic requirements of Tet2, we engineered catalytically inactive Tet2 mutant mice and conducted comparative analyses of Tet2 mutant and Tet2 knockout animals. Tet2 knockout mice exhibited expansion of hematopoietic stem and progenitor cells (HSPCs) and developed myeloid and lymphoid disorders, while Tet2 mutant mice predominantly developed myeloid malignancies reminiscent of human myelodysplastic syndromes. HSPCs from Tet2 knockout mice exhibited distinct gene expression profiles, including downregulation of Gata2. Overexpression of Gata2 in Tet2 knockout bone marrow cells ameliorated disease phenotypes. Our results reveal the non-catalytic roles of TET2 in HSPC homeostasis.


Asunto(s)
Biocatálisis , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Proteínas Proto-Oncogénicas/metabolismo , Animales , Médula Ósea/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Dioxigenasas , Regulación de la Expresión Génica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Ratones Noqueados , Mutación/genética , Fenotipo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética
13.
Cell Rep ; 28(8): 1993-2003.e5, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433977

RESUMEN

The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2. We found that Rinf forms a complex with Nanog, Oct4, Tet1, and Tet2 and facilitates their proper recruitment to regulatory regions of pluripotency and Tet genes in ESCs to positively regulate their transcription. Rinf deficiency in ESCs reduces expression of Rinf target genes, including several pluripotency factors and Tet enzymes, and causes aberrant differentiation. Together, our findings establish Rinf as a regulator of the pluripotency network genes and Tet enzymes in ESCs.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/deficiencia , Dioxigenasas , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Ratones , Ratones SCID , Proteína Homeótica Nanog/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/deficiencia , Transcripción Genética
14.
Neuropsychopharmacology ; 42(8): 1657-1669, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28074830

RESUMEN

Depression is a leading cause of disease burden, yet current therapies fully treat <50% of affected individuals. Increasing evidence implicates epigenetic mechanisms in depression and antidepressant action. Here we examined a possible role for the DNA dioxygenase, ten-eleven translocation protein 1 (TET1), in depression-related behavioral abnormalities. We applied chronic social defeat stress, an ethologically validated mouse model of depression-like behaviors, and examined Tet1 expression changes in nucleus accumbens (NAc), a key brain reward region. We show decreased Tet1 expression in NAc in stress-susceptible mice only. Surprisingly, selective knockout of Tet1 in NAc neurons of adult mice produced antidepressant-like effects in several behavioral assays. To identify Tet1 targets that mediate these actions, we performed RNAseq on NAc after conditional deletion of Tet1 and found that immune-related genes are the most highly dysregulated. Moreover, many of these genes are also upregulated in the NAc of resilient mice after chronic social defeat stress. These findings reveal a novel role for TET1, an enzyme important for DNA hydroxymethylation, in the brain's reward circuitry in modulating stress responses in mice. We also identify a subset of genes that are regulated by TET1 in this circuitry. These findings provide new insight into the pathophysiology of depression, which can aid in future antidepressant drug discovery efforts.


Asunto(s)
Ansiedad/fisiopatología , Proteínas de Unión al ADN/fisiología , Depresión/fisiopatología , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Estrés Psicológico/fisiopatología , Animales , Ansiedad/genética , Conducta Animal , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Depresión/genética , Modelos Animales de Enfermedad , Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Regulación hacia Arriba
15.
Cell Rep ; 15(8): 1809-21, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27184841

RESUMEN

Ten-eleven translocation (Tet) family proteins convert 5-methylcytosine to 5-hydroxymethylcytosine. We show that mouse embryonic stem cells (ESCs) depleted of Tet1 and/or Tet2 by RNAi exhibit short telomeres and chromosomal instability, concomitant with reduced telomere recombination. Tet1 and Tet2 double-knockout ESCs also display short telomeres but to a lesser extent. Notably, Tet1/2/3 triple-knockout ESCs show heterogeneous telomere lengths and increased frequency of telomere loss and chromosomal fusion. Mechanistically, Tets depletion or deficiency increases Dnmt3b and decreases 5hmC levels, resulting in elevated methylation levels at sub-telomeres. Consistently, knockdown of Dnmt3b or addition of 2i (MAPK and GSK3ß inhibitors), which also inhibits Dnmt3b, reduces telomere shortening, partially rescuing Tet1/2 deficiency. Interestingly, Tet1/2 double or Tet1/2/3 triple knockout in ESCs consistently upregulates Zscan4, which may counteract telomere shortening. Together, Tet enzymes play important roles in telomere maintenance and chromosomal stability of ESCs by modulating sub-telomeric methylation levels.


Asunto(s)
Inestabilidad Cromosómica/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Telómero/metabolismo , Animales , Cromosomas de los Mamíferos/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Eliminación de Gen , Ratones , Ratones Noqueados , Recombinación Genética/genética , Acortamiento del Telómero , ADN Metiltransferasa 3B
16.
Mol Cell Biol ; 36(3): 452-61, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26598602

RESUMEN

DNA methylation is a dynamic epigenetic modification with an important role in cell fate specification and reprogramming. The Ten eleven translocation (Tet) family of enzymes converts 5-methylcytosine to 5-hydroxymethylcytosine, which promotes passive DNA demethylation and functions as an intermediate in an active DNA demethylation process. Tet1/Tet2 double-knockout mice are characterized by developmental defects and epigenetic instability, suggesting a requirement for Tet-mediated DNA demethylation for the proper regulation of gene expression during differentiation. Here, we used whole-genome bisulfite and transcriptome sequencing to characterize the underlying mechanisms. Our results uncover the hypermethylation of DNA methylation canyons as the genomic key feature of Tet1/Tet2 double-knockout mouse embryonic fibroblasts. Canyon hypermethylation coincided with disturbed regulation of associated genes, suggesting a mechanistic explanation for the observed Tet-dependent differentiation defects. Based on these results, we propose an important regulatory role of Tet-dependent DNA demethylation for the maintenance of DNA methylation canyons, which prevents invasive DNA methylation and allows functional regulation of canyon-associated genes.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Proteínas Proto-Oncogénicas/genética , Transcriptoma , Adipogénesis , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/metabolismo
17.
Cell Rep ; 13(8): 1692-704, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26586431

RESUMEN

TET1/2/3 are methylcytosine dioxygenases that regulate cytosine hydroxymethylation. Tet1/2 are abundantly expressed in HSC/HPCs and are implicated in hematological malignancies. Tet2 deletion in mice causes myeloid malignancies, while Tet1-null mice develop B cell lymphoma after an extended period of latency. Interestingly, TET1/2 are often concomitantly downregulated in acute B-lymphocytic leukemia. Here, we investigated the overlapping and non-redundant functions of Tet1/2 using Tet1/2 double-knockout (DKO) mice. DKO and Tet2(-/-) HSC/HPCs show overlapping and unique 5 hmC and 5 mC profiles. DKO mice exhibit strikingly decreased incidence and delayed onset of myeloid malignancies in comparison to Tet2(-/-) mice and in contrast develop lethal B cell malignancies. Transcriptome analysis of DKO tumors reveals expression changes in many genes dysregulated in human B cell malignancies, including LMO2, BCL6, and MYC. These results highlight the critical roles of TET1/2 individually and together in the pathogenesis of hematological malignancies.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Hematológicas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Citosina/metabolismo , Metilación de ADN/fisiología , Dioxigenasas/metabolismo , Regulación hacia Abajo/fisiología , Humanos , Ratones , Ratones Noqueados
19.
Nat Immunol ; 16(6): 653-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867473

RESUMEN

The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Asunto(s)
Linfocitos B/fisiología , Citosina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Linfoma de Células B/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Inestabilidad Cromosómica , Citosina/metabolismo , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Exoma/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
20.
Cell Stem Cell ; 15(4): 471-487, 2014 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-25090446

RESUMEN

Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, "naive" state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Supervivencia Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...