Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
medRxiv ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38853963

RESUMEN

High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. It accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring the impact of antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI on the basis of MOI, in the form of either a two-moment approximation method or Little's law. We illustrate these methods with MOI estimates obtained under sparse sampling schemes with the recently proposed " v a r coding" method, based on sequences of the v a r multigene family encoding for the major variant surface antigen of the blood stage of malaria infection. The methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. We incorporate into the sampling of the simulation output, limitations representative of those encountered in the collection of field data, including under-sampling of v a r genes, missing data, and usage of antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. We demonstrate that both proposed methods give good and consistent FOI estimates across various simulated scenarios. Their application to the field surveys shows a pronounced reduction in annual FOI during intervention, of more than 70%. The proposed approach should be applicable to the many geographical locations where cohort or cross-sectional studies with regular and frequent sampling are lacking but single-time-point surveys under sparse sampling schemes are available, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens of humans, wildlife and livestock whose immune evasion strategies are based on large antigenic variation resulting in high multiplicity of infection.

2.
Bull Math Biol ; 86(8): 91, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888640

RESUMEN

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Conceptos Matemáticos , Modelos Biológicos , Control de Mosquitos , Humanos , Malaria/prevención & control , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Animales , Mosquitos Vectores/parasitología , Prevalencia , Simulación por Computador , Anopheles/parasitología , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/estadística & datos numéricos
3.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370729

RESUMEN

Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.

4.
Stud Health Technol Inform ; 310: 544-548, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269868

RESUMEN

As the first stage of substantive theory building, this study explored the behavioral responses of people with long-term weight concerns using mHealth to increase their physical activity within a New Zealand context. A constructivist grounded theory method was adopted. Twenty-two participants with long-term weight concerns and personal experience using mobile health to increase physical activity participated in in-depth interviews. Four themes and eight categories were conceptualized: motivation, physical activity behavioral responses, mobile health evaluation, and social interaction. The role of mobile health in increasing physical activity and improving overall wellness is broadly acknowledged and facilitates, to some extent, the social interactions among family, friends and the wider community.


Asunto(s)
Ejercicio Físico , Telemedicina , Humanos , Teoría Fundamentada , Amigos , Motivación
5.
BMJ Health Care Inform ; 30(1)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38050422

RESUMEN

BACKGROUND: Health information technology (HIT) is increasingly used to enable health service/system transformation. Most HIT implementations fail to some degree; very few demonstrate sustainable success. No guidelines exist for health service leaders to leverage factors associated with success. The purpose of this paper is to present an evidence-based guideline for leaders to test and leverage in practice. METHODS: This guideline was developed from a literature review and refined by a set of eight interviews with people in senior HIT roles, which were thematically analysed. It was refined in the consultancy work of the first author and confirmed after minor refinements. RESULTS: Five key actions were identified: relationships, vision, HIT system attributes, constant evaluation and learning culture. CONCLUSIONS: This guideline presents a significant opportunity for health system leaders to systematically check relevant success factors during the implementation process of single projects and regional/national programmes.


Asunto(s)
Guías como Asunto , Informática Médica , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38031549

RESUMEN

A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.

7.
bioRxiv ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986738

RESUMEN

The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.

8.
mBio ; : e0201423, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882786

RESUMEN

The Plasmodium falciparum alternative histones Pf H2A.Z and Pf H2B.Z are enriched in the same nucleosomes in intergenic euchromatin but depleted from heterochromatin. They occupy most promoters but are only dynamically associated with expression at var genes. In other organisms, acetylation of H2A.Z is important for its functions in gene expression and chromatin structure. Here, we show that acetylated Pf H2A.Z and Pf H2B.Z are dynamically associated with gene expression at promoters. In addition, acetylated Pf H2A.Z and Pf H2B.Z are antagonized by the sirtuin class III histone deacetylases (HDAC) PfSir2A and B at heterochromatin boundaries and encroach upon heterochromatin in parasites lacking PfSir2A or B. However, the majority of acetylated Pf H2A.Z and Pf H2B.Z are deacetylated by class I or II HDACs. Acetylated Pf H2A.Z and Pf H2B.Z are also dynamically associated with promoter activity of both canonical upstream var gene promoters and var gene introns. These findings suggest that both acetylated Pf H2A.Z and Pf H2B.Z play critical roles in gene expression and contribute to maintenance of chromatin structure at the boundaries of subtelomeric, facultative heterochromatin, critical for the variegated expression of genes that enable rapid adaptation to altered host environments.IMPORTANCEThe malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.

9.
Front Genet ; 14: 1071896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323661

RESUMEN

Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.

10.
medRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37292908

RESUMEN

Here we introduce a new endpoint "census population size" to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOIvar), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOIvar from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOIvar in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOIvar, and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.

11.
PLoS Comput Biol ; 19(1): e1010816, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595546

RESUMEN

At a time when effective tools for monitoring malaria control and eradication efforts are crucial, the increasing availability of molecular data motivates their application to epidemiology. The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. Estimating MOI remains a challenge for high-transmission settings where individuals typically carry multiple co-occurring infections. Several quantitative approaches have been developed to estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics under three transmission conditions using an extension of a previously developed stochastic agent-based model. We demonstrate that these approaches are complementary and best considered across distinct transmission intensities. While varcoding can underestimate MOI, it allows robust estimation, especially under high transmission where repertoire overlap is extremely limited from frequency-dependent selection. In contrast, THE REAL McCOIL often considerably overestimates MOI, but still provides reasonable estimates for low and moderate transmission. Regardless of transmission intensity, results for THE REAL McCOIL indicate that an inaccurate tail at high MOI values is generated, and that at high transmission, an apparently reasonable estimated MOI distribution can arise from some degree of compensation between overestimation and underestimation. As many countries pursue malaria elimination targets, defining the most suitable approach to estimate MOI based on sample size and local transmission intensity is highly recommended for monitoring the impact of intervention programs.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Malaria/parasitología , Antígenos de Protozoos/genética , Repeticiones de Microsatélite , Variación Genética , Proteínas Protozoarias/genética
12.
medRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38196597

RESUMEN

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35600674

RESUMEN

High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.

15.
Bioinformatics ; 38(7): 1823-1829, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35025988

RESUMEN

MOTIVATION: Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination. RESULTS: We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/qianfeng2/detREC_program. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Variación Genética , Proteínas Protozoarias , Proteínas Protozoarias/genética , Plasmodium falciparum/genética , Programas Informáticos , Evolución Molecular
16.
Int J Parasitol ; 52(11): 721-731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35093396

RESUMEN

Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Adulto , Adolescente , Humanos , Plasmodium falciparum , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/parasitología , Factores de Edad
17.
Artículo en Inglés | MEDLINE | ID: mdl-36998722

RESUMEN

The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small 'tag' region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.

18.
Stud Health Technol Inform ; 284: 90-92, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920481

RESUMEN

Nursing and midwifery informatics position statements are important to guide and inform our workforce. Australasian position statements have been developed to establish the place of nursing and midwifery informatics in the health system and progress the development of senior roles.


Asunto(s)
Partería , Femenino , Humanos , Embarazo , Recursos Humanos
19.
Mol Ecol ; 30(16): 3974-3992, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34143538

RESUMEN

Here, we report the first population genetic study to examine the impact of indoor residual spraying (IRS) on Plasmodium falciparum in humans. This study was conducted in an area of high seasonal malaria transmission in Bongo District, Ghana. IRS was implemented during the dry season (November-May) in three consecutive years between 2013 and 2015 to reduce transmission and attempt to bottleneck the parasite population in humans towards lower diversity with greater linkage disequilibrium. The study was done against a background of widespread use of long-lasting insecticidal nets, typical for contemporary malaria control in West Africa. Microsatellite genotyping with 10 loci was used to construct 392 P. falciparum multilocus infection haplotypes collected from two age-stratified cross-sectional surveys at the end of the wet seasons pre- and post-IRS. Three-rounds of IRS, under operational conditions, led to a >90% reduction in transmission intensity and a 35.7% reduction in the P. falciparum prevalence (p < .001). Despite these declines, population genetic analysis of the infection haplotypes revealed no dramatic changes with only a slight, but significant increase in genetic diversity (He : pre-IRS = 0.79 vs. post-IRS = 0.81, p = .048). Reduced relatedness of the parasite population (p < .001) was observed post-IRS, probably due to decreased opportunities for outcrossing. Spatiotemporal genetic differentiation between the pre- and post-IRS surveys (D = 0.0329 [95% CI: 0.0209 - 0.0473], p = .034) was identified. These data provide a genetic explanation for the resilience of P. falciparum to short-term IRS programmes in high-transmission settings in sub-Saharan Africa.


Asunto(s)
Insecticidas , Malaria Falciparum , Repeticiones de Microsatélite , Control de Mosquitos , Plasmodium falciparum , Estudios Transversales , Ghana/epidemiología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Estaciones del Año
20.
BMJ Health Care Inform ; 28(1)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33753326

RESUMEN

INTRODUCTION: Telehealth became the most practical option for general practice consultations in Aotearoa New Zealand (NZ) as a result of the national lockdowns in response to the COVID-19 pandemic. What is the consumer experience of access to telehealth and how do consumers and providers perceive this mode of care delivery going forward? METHODS AND ANALYSIS: A national survey of general practice consumers and providers who used telehealth services since the national lockdowns in 2020 will be distributed. It is based on the Unified Theory of Acceptance and Use of Technology framework of technology acceptance and the access to care framework. The data will be statistically analysed to create a foundation for in-depth research on the use of telehealth services in NZ general practice services, with a specific focus on consumer experiences and health outcomes. ETHICS AND DISSEMINATION: Ethics approval was granted by the Auckland Health Research Ethics Committee on 13/11/2020, reference AH2539. The survey will be disseminated online.


Asunto(s)
COVID-19/epidemiología , Medicina General/organización & administración , Telemedicina/organización & administración , Actitud hacia los Computadores , Humanos , Nueva Zelanda/epidemiología , Pandemias , Estudios Prospectivos , Proyectos de Investigación , SARS-CoV-2 , Encuestas y Cuestionarios , Teléfono , Comunicación por Videoconferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...