Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(13): 6226-6231, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30867296

RESUMEN

The Bay of Bengal is known as the epicenter for seeding several devastating cholera outbreaks across the globe. Vibrio cholerae, the etiological agent of cholera, has extraordinary competency to acquire exogenous DNA by horizontal gene transfer (HGT) and adapt them into its genome for structuring metabolic processes, developing drug resistance, and colonizing the human intestine. Antimicrobial resistance (AMR) in V. cholerae has become a global concern. However, little is known about the identity of the resistance traits, source of AMR genes, acquisition process, and stability of the genetic elements linked with resistance genes in V. cholerae Here we present details of AMR profiles of 443 V. cholerae strains isolated from the stool samples of diarrheal patients from two regions of India. We sequenced the whole genome of multidrug-resistant (MDR) and extensively drug-resistant (XDR) V. cholerae to identify AMR genes and genomic elements that harbor the resistance traits. Our genomic findings were further confirmed by proteome analysis. We also engineered the genome of V. cholerae to monitor the importance of the autonomously replicating plasmid and core genome in the resistance profile. Our findings provided insights into the genomes of recent cholera isolates and identified several acquired traits including plasmids, transposons, integrative conjugative elements (ICEs), pathogenicity islands (PIs), prophages, and gene cassettes that confer fitness to the pathogen. The knowledge generated from this study would help in better understanding of V. cholerae evolution and management of cholera disease by providing clinical guidance on preferred treatment regimens.


Asunto(s)
Cólera/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Vibrio cholerae/genética , Antibacterianos/farmacología , Conjugación Genética/genética , Elementos Transponibles de ADN/genética , Diarrea/microbiología , Evolución Molecular , Heces/microbiología , Variación Genética , Islas Genómicas/genética , Humanos , Imipenem/farmacología , India , Secuencias Repetitivas Esparcidas/genética , Fenotipo , Plásmidos/genética , Profagos/genética , Proteoma , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/aislamiento & purificación , Vibrio cholerae/patogenicidad , Vibrio cholerae O1/genética , Vibrio cholerae O1/aislamiento & purificación , Vibrio cholerae O1/patogenicidad , Secuenciación Completa del Genoma
2.
Microb Ecol ; 77(2): 546-557, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30009332

RESUMEN

Antimicrobial resistance (AMR) among bacterial species that resides in complex ecosystems is a natural phenomenon. Indiscriminate use of antimicrobials in healthcare, livestock, and agriculture provides an evolutionary advantage to the resistant variants to dominate the ecosystem. Ascendency of resistant variants threatens the efficacy of most, if not all, of the antimicrobial drugs commonly used to prevent and/or cure microbial infections. Resistant phenotype is very common in enteric bacteria. The most common mechanisms of AMR are enzymatic modifications to the antimicrobials or their target molecules. In enteric bacteria, most of the resistance traits are acquired by horizontal gene transfer from closely or distantly related bacterial population. AMR traits are generally linked with mobile genetic elements (MGEs) and could rapidly disseminate to the bacterial species through horizontal gene transfer (HGT) from a pool of resistance genes. Although prevalence of AMR genes among pathogenic bacteria is widely studied in the interest of infectious disease management, the resistance profile and the genetic traits that encode resistance to the commensal microbiota residing in the gut of healthy humans are not well-studied. In the present study, we have characterized AMR phenotypes and genotypes of five dominant commensal enteric bacteria isolated from the gut of healthy Indians. Our study revealed that like pathogenic bacteria, enteric commensals are also multidrug-resistant. The genes encoding antibiotic resistance are physically linked with MGEs and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Consequently, the AMR genes present in the chromosome of commensal gut bacteria could be a potential source of resistance functions for other enteric pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Fenotipo , Simbiosis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Elementos Transponibles de ADN/genética , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Genotipo , Humanos , Secuencias Repetitivas Esparcidas/genética , Metagenoma/genética , Pruebas de Sensibilidad Microbiana , Transformación Genética/genética , Vibrio cholerae/genética , Secuenciación Completa del Genoma
3.
Sci Rep ; 8(1): 10104, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973712

RESUMEN

The diversity and basic functional attributes of the gut microbiome of healthy Indians is not well understood. This study investigated the gut microbiome of three Indian communities: individuals residing in rural and urban (n = 49) sea level Ballabhgarh areas and in rural high altitude areas of Leh, Ladakh in North India (n = 35). Our study revealed that the gut microbiome of Indian communities is dominated by Firmicutes followed by Bacteroidetes, Actinobateria and Proteobacteria. Although, 54 core bacterial genera were detected across the three distinct communities, the gut bacterial composition displayed specific signatures and was observed to be influenced by the topographical location and dietary intake of the individuals. The gut microbiome of individuals living in Leh was observed to be significantly similar with a high representation of Bacteroidetes and low abundance of Proteobacteria. In contrast, the gut microbiome of individuals living in Ballabhgarh areas harbored higher number of Firmicutes and Proteobacteria and is enriched with microbial xenobiotic degradation pathways. The rural community residing in sea level Ballabhgarh areas has unique microbiome characterized not only by a higher diversity, but also a higher degree of interindividual homogeneity.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Actinobacteria/aislamiento & purificación , Adolescente , Adulto , Bacteroidetes/aislamiento & purificación , Dieta , Femenino , Firmicutes/aislamiento & purificación , Humanos , India , Masculino , Persona de Mediana Edad , Proteobacteria/aislamiento & purificación , Población Rural , Población Urbana
4.
Sci Rep ; 7(1): 14468, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089611

RESUMEN

Emergence of antimicrobial resistant Gram-negative bacteria has created a serious global health crisis and threatens the effectiveness of most, if not all, antibiotics commonly used to prevent and treat bacterial infections. There is a dearth of detailed studies on the prevalence of antimicrobial resistance (AMR) patterns in India. Here, we have isolated and examined AMR patterns of 654 enteric pathogens and investigated complete genome sequences of isolates from six representative genera, which in aggregate encode resistance against 22 antibiotics representing nine distinct drug classes. This study revealed that ~97% isolates are resistant against ≥2 antibiotics, ~24% isolates are resistant against ≥10 antibiotics and ~3% isolates are resistant against ≥15 antibiotics. Analyses of whole genome sequences of six extensive drug resistant enteric pathogens revealed presence of multiple mobile genetic elements, which are physically linked with resistance traits. These elements are therefore appearing to be responsible for disseminating drug resistance among bacteria through horizontal gene transfer. The present study provides insights into the linkages between the resistance patterns to certain antibiotics and their usage in India. The findings would be useful to understand the genetics of resistance traits and severity of and difficulty in tackling AMR enteric pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Humanos , India , Pruebas de Sensibilidad Microbiana , Fenotipo , Secuenciación Completa del Genoma
5.
Sci Rep ; 6: 26775, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27240745

RESUMEN

To explore the natural microbial community of any ecosystems by high-resolution molecular approaches including next generation sequencing, it is extremely important to develop a sensitive and reproducible DNA extraction method that facilitate isolation of microbial DNA of sufficient purity and quantity from culturable and uncultured microbial species living in that environment. Proper lysis of heterogeneous community microbial cells without damaging their genomes is a major challenge. In this study, we have developed an improved method for extraction of community DNA from different environmental and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved method has been named as the THSTI method to depict the Institute where the method was developed.


Asunto(s)
ADN/aislamiento & purificación , Metagenómica/métodos , ADN Bacteriano/aislamiento & purificación , Genoma Microbiano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...