RESUMEN
Hemolytic uremic syndrome (HUS) is a systemic sequelae from gastrointestinal infection with Shiga toxin (Stx) producing Escherichia coli (STEC) that can result in acute kidney injury, lasting renal disease, and death. Despite a window for intervention between hemorrhagic diarrhea and onset of HUS, no specific therapies exist to prevent or treat HUS following STEC infection. Furthermore, there is no way to predict which patients with STEC will develop HUS or any rapid way to determine which Stx variant is present. To address this, we have broadened the therpay to neutralize additional toxin variants. It contains a multimer of nanobodies derived from camelid heavy chain antibody fragments (VHHs). An improved VHH-based neutralizing agent (VNA2) is delivered intramuscularly as RNA combined with LION nanoparticles rather than mRNA, that replicates on administration (repRNA), resulting in a rapidly circulating VNA that can bind systemic toxin. The RNA/VNA2-Stx administered intramuscularly prevents toxicity and death in a mouse model of acute Stx toxicity.
RESUMEN
Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.
Asunto(s)
COVID-19 , Fosfatidilinositol 3-Quinasa Clase Ib , Inflamación , SARS-CoV-2 , Animales , Humanos , Ratones , Permeabilidad Capilar/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , COVID-19/patología , Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Inflamación/patología , Pulmón/patología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos C57BL , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , SARS-CoV-2/fisiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patologíaRESUMEN
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Asunto(s)
Mycobacterium tuberculosis , Animales , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Ratones , Sitios de Carácter Cuantitativo , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología , Modelos Animales de Enfermedad , Animales no Consanguíneos , Humanos , Mapeo Cromosómico , Biología de SistemasRESUMEN
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Microbioma Gastrointestinal , Rotavirus , Lactante , Humanos , Interferón lambda , Células Epiteliales , Zea maysRESUMEN
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
RESUMEN
We identified a fragment (Domain 3-D3) of the immunodominant sporozoite surface glycoprotein of the zoonotic parasite Cryptosporidium gp900, which is absent C. hominis and C. parvum anthroponosum. The fragment is highly antigenic and is able to effectively differentiate between zoonotic C. parvum and species/genotypes that infect preferentially humans. D3 detection provides a serological tool to determine whether the source of human cryptosporidiosis is of animal or human origin. We demonstrate this in experimentally challenged piglets, mice, rats, and alpaca. We speculate that the absence of this fragment from the C. hominis and C. parvum anthroponosum gp900 protein may play a key role in their host restriction.
Asunto(s)
Camélidos del Nuevo Mundo , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Ratones , Ratas , Porcinos , Glicoproteínas , Glicoproteínas de Membrana , Propionibacterium acnesRESUMEN
Cryptosporidium hominis is a serious cause of childhood diarrhea in developing countries. The development of therapeutics is impeded by major technical roadblocks including lack of cryopreservation and simple culturing methods. This impacts the availability of optimized/standardized singular sources of infectious parasite oocysts for research and human challenge studies. The human C. hominis TU502 isolate is currently propagated in gnotobiotic piglets in only one laboratory, which limits access to oocysts. Streamlined cryopreservation could enable creation of a biobank to serve as an oocyst source for research and distribution to other investigators requiring C. hominis. Here, we report cryopreservation of C. hominis TU502 oocysts by vitrification using specially designed specimen containers scaled to 100 µL volume. Thawed oocysts exhibit ~70% viability with robust excystation and 100% infection rate in gnotobiotic piglets. The availability of optimized/standardized sources of oocysts may streamline drug and vaccine evaluation by enabling wider access to biological specimens.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Porcinos , Criptosporidiosis/parasitología , Vitrificación , Oocistos , CriopreservaciónRESUMEN
Cryptosporidiosis was shown a decade ago to be a major contributor to morbidity and mortality of diarrheal disease in children in low-income countries. A serious obstacle to develop and evaluate immunogens and vaccines to control this disease is the lack of well-characterized immunocompetent rodent models. Here, we optimized and compared two mouse models for the evaluation of vaccines: the Cryptosporidium tyzzeri model, which is convenient for screening large numbers of potential mixtures of immunogens, and the Cryptosporidium parvum-infected mouse pretreated with interferon gamma-neutralizing monoclonal antibody.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Criptosporidiosis/prevención & control , Diarrea , Modelos Animales de Enfermedad , RatonesRESUMEN
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.
Asunto(s)
COVID-19 , Enfermedades de los Roedores , Animales , COVID-19/veterinaria , Vacunas contra la COVID-19 , Cricetinae , Modelos Animales de Enfermedad , Humanos , Sueros Inmunes , Inmunoglobulina G , Pulmón/patología , Macaca mulatta , Mesocricetus , Enfermedades de los Roedores/patología , SARS-CoV-2 , Pérdida de PesoRESUMEN
Background: Diarrhoea remains one of the leading causes of childhood mortality globally. Recent epidemiological studies conducted in low-middle income countries (LMICs) identified Shigella spp. as the first and second most predominant agent of dysentery and moderate diarrhoea, respectively. Antimicrobial therapy is often necessary for Shigella infections; however, we are reaching a crisis point with efficacious antimicrobials. The rapid emergence of resistance against existing antimicrobials in Shigella spp. poses a serious global health problem. Methods: Aiming to identify alternative antimicrobial chemicals with activity against antimicrobial resistant Shigella, we initiated a collaborative academia-industry drug discovery project, applying high-throughput phenotypic screening across broad chemical diversity and followed a lead compound through in vitro and in vivo characterisation. Results: We identified several known antimicrobial compound classes with antibacterial activity against Shigella. These compounds included the oral carbapenem Tebipenem, which was found to be highly potent against broadly susceptible Shigella and contemporary MDR variants for which we perform detailed pre-clinical testing. Additional in vitro screening demonstrated that Tebipenem had activity against a wide range of other non-Shigella enteric bacteria. Cognisant of the risk for the development of resistance against monotherapy, we identified synergistic behaviour of two different drug combinations incorporating Tebipenem. We found the orally bioavailable prodrug (Tebipenem pivoxil) had ideal pharmacokinetic properties for treating enteric pathogens and was effective in clearing the gut of infecting organisms when administered to Shigella-infected mice and gnotobiotic piglets. Conclusions: Our data highlight the emerging antimicrobial resistance crisis and shows that Tebipenem pivoxil (licenced for paediatric respiratory tract infections in Japan) should be accelerated into human trials and could be repurposed as an effective treatment for severe diarrhoea caused by MDR Shigella and other enteric pathogens in LMICs. Funding: Tres Cantos Open Lab Foundation (projects TC239 and TC246), the Bill and Melinda Gates Foundation (grant OPP1172483) and Wellcome (215515/Z/19/Z).
Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Shigella , Animales , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Niño , Diarrea , Reposicionamiento de Medicamentos , Humanos , Ratones , PorcinosRESUMEN
A major obstacle to developing vaccines against cryptosporidiosis, a serious diarrheal disease of children in developing countries, is the lack of rodent models essential to identify and screen protective immunogens. Rodent models commonly used for drug discovery are unsuitable for vaccine development because they either are purposefully immunodeficient or immunosuppressed. Here, we describe the development and optimization of an immunocompetent intratracheal (IT) rat model susceptible to infections with sporozoites of Cryptosporidium parvum and Cryptosporidium hominis - the primary causes of human cryptosporidiosis. A model suitable for screening of parasite immunogens is a prerequisite for immunogen screening and vaccine development.
Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Cryptosporidium parvum/inmunología , Cryptosporidium/inmunología , Modelos Animales , Ratas Sprague-Dawley/inmunología , Animales , Antígenos de Protozoos , Criptosporidiosis/prevención & control , Femenino , Inmunidad Humoral , Inmunocompetencia , Ratas , Ratas Sprague-Dawley/parasitología , Esporozoítos/inmunología , Tráquea/parasitología , Vacunación/métodosRESUMEN
Pasteurella multocida isolates from dairy cattle on a farm in Spain were associated with pneumonia of calves (six isolates) and mastitis of heifers (five isolates). The objective was to determine if the P. multocida isolates retrieved from both disease scenarios were the same strain or whether more than one strain was present. The isolates were identified by a species-specific polymerase chain (PCR) assay, serotyped by the Heddleston scheme and then typed by a number of molecular genotyping assays including multi-locus sequence typing (MLST). The 11 isolates were confirmed as P. multocida but failed to react with any of the 16 Heddleston antisera. The PCR targeting the genes associated with the lipopolysaccharide outer core biosynthesis locus assigned all the isolates to L3-the type that contains Heddleston serovars 3 and 4. The MLST analysis showed all isolates belonging to ST 79 within the clonal complex of ST13. Only one of the isolates showed a slight different profile by the repetitive extragenic palindromic PCR. The conclusion was that the same strain was associated with pneumonia in calves and mastitis in heifers.
Asunto(s)
Mastitis Bovina/microbiología , Infecciones por Pasteurella/veterinaria , Pasteurella multocida , Neumonía Bacteriana/veterinaria , Animales , Bovinos , Femenino , Infecciones por Pasteurella/microbiología , Pasteurella multocida/clasificación , Pasteurella multocida/genética , Pasteurella multocida/inmunología , Neumonía Bacteriana/microbiologíaRESUMEN
Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.
Asunto(s)
Actinobacillus pleuropneumoniae/genética , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Genoma Bacteriano , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones del Sistema Respiratorio/veterinaria , Enfermedades de los Porcinos/epidemiología , Actinobacillus pleuropneumoniae/efectos de los fármacos , Actinobacillus pleuropneumoniae/aislamiento & purificación , Animales , Antibacterianos/farmacología , Australia/epidemiología , Secuencia de Bases , Bordetella bronchiseptica/efectos de los fármacos , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/aislamiento & purificación , Dosificación de Gen , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Haemophilus parasuis/efectos de los fármacos , Haemophilus parasuis/genética , Haemophilus parasuis/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Pasteurella multocida/efectos de los fármacos , Pasteurella multocida/genética , Pasteurella multocida/aislamiento & purificación , ARN Ribosómico 23S/genética , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/microbiología , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/microbiologíaRESUMEN
Antimicrobial resistance in bacterial porcine respiratory pathogens has been shown to exist in many countries. However, little is known about the variability in antimicrobial susceptibility within a population of a single bacterial respiratory pathogen on a pig farm. This study examined the antimicrobial susceptibility of Actinobacillus pleuropneumoniae using multiple isolates within a pig and across the pigs in three different slaughter batches. Initially, the isolates from the three batches were identified, serotyped, and subsample genotyped. All the 367 isolates were identified as A. pleuropneumoniae serovar 1, and only a single genetic profile was detected in the 74 examined isolates. The susceptibility of the 367 isolates of A. pleuropneumoniae to ampicillin, tetracycline and tilmicosin was determined by a disc diffusion technique. For tilmicosin, the three batches were found to consist of a mix of susceptible and resistant isolates. The zone diameters of the three antimicrobials varied considerably among isolates in the second sampling. In addition, the second sampling provided statistically significant evidence of bimodal populations in terms of zone diameters for both tilmicosin and ampicillin. The results support the hypothesis that the antimicrobial susceptibility of one population of a porcine respiratory pathogen can vary within a batch of pigs on a farm.
Asunto(s)
Infecciones por Actinobacillus/microbiología , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/efectos de los fármacos , Enfermedades de los Porcinos/microbiología , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Genotipo , Pulmón/microbiología , Pruebas de Sensibilidad Microbiana , Pleuroneumonía/microbiología , Pleuroneumonía/veterinaria , PorcinosRESUMEN
The aim of this study was to examine the antimicrobial susceptibility of 97 Haemophilus parasuis cultured from Australian pigs. As there is no existing standard antimicrobial susceptibility technique available for H. parasuis, methods utilising the supplemented media, BA/SN for disc diffusion and test medium broth (TMB) for a microdilution technique, were initially evaluated with the reference strains recommended by the Clinical and Laboratory Standards Institute. The results of the media evaluation suggested that BA/SN and TMB can be used as suitable media for susceptibility testing of H. parasuis. The proposed microdilution technique was then used with 97 H. parasuis isolates and nine antimicrobial agents. The study found that Australian isolates showed elevated minimum inhibitory concentrations (MICs) for ampicillin (1%), penicillin (2%), erythromycin (7%), tulathromycin (9%), tilmicosin (22%), tetracycline (31%) and trimethoprim-sulfamethoxazole (40%). This study has described potential antimicrobial susceptibility methods for H. parasuis and has detected a low percentage of Australian H. parasuis isolates with elevated antimicrobial MICs.
Asunto(s)
Antibacterianos/farmacología , Técnicas Bacteriológicas/veterinaria , Farmacorresistencia Bacteriana , Haemophilus parasuis/aislamiento & purificación , Animales , Pruebas de Sensibilidad Microbiana/normasRESUMEN
The porcine respiratory disease complex greatly affects the health and production of pigs. While antimicrobial agents are used to treat the respiratory infections caused by bacterial pathogens, there is no current information on antimicrobial resistance in Australian pig respiratory bacterial isolates. The aim of this study was to determine the antimicrobial resistance profiles, by determining the minimum inhibitory concentration of nine antimicrobial agents for 71 Actinobacillus pleuropneumoniae, 51 Pasteurella multocida and 18 Bordetella bronchiseptica cultured from Australian pigs. The majority of A. pleuropneumoniae isolates were resistant to erythromycin (89%) and tetracycline (75%). Resistance to ampicillin (8.5%), penicillin (8.5%) and tilmicosin (25%) was also identified. The P. multocida isolates exhibited resistance to co-trimoxazole (2%), florfenicol (2%), ampicillin (4%), penicillin (4%), erythromycin (14%) and tetracycline (28%). While all the B. bronchiseptica isolates showed resistance to beta-lactams (ampicillin, ceftiofur and penicillin), some were resistant to erythromycin (94%), florfenicol (6%), tilmicosin (22%) and tetracycline (39%). The incidence of multiple drug resistance (MDR) varied across the species - in B. bronchiseptica, 27.8% of resistant isolates showed MDR, while 9.1% of the resistant isolates in A. pleuropneumoniae, and 4.8% in P. multocida showed MDR. This study illustrated that Australian pig strains of bacterial respiratory pathogens exhibited low levels of resistance to antimicrobial agents commonly used in the pig industry.