Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(8): 3441-3451, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35668157

RESUMEN

Prefrontal circuits are thought to underlie aberrant emotion contributing to relapse in abstinence; however, the discrete cell-types and mechanisms remain largely unknown. Corticotropin-releasing factor and its cognate type-1 receptor, a prominent brain stress system, is implicated in anxiety and alcohol use disorder (AUD). Here, we tested the hypothesis that medial prefrontal cortex CRF1-expressing (mPFCCRF1+) neurons comprise a distinct population that exhibits neuroadaptations following withdrawal from chronic ethanol underlying AUD-related behavior. We found that mPFCCRF1+ neurons comprise a glutamatergic population with distinct electrophysiological properties and regulate anxiety and conditioned rewarding effects of ethanol. Notably, mPFCCRF1+ neurons undergo unique neuroadaptations compared to neighboring neurons including a remarkable decrease in excitability and glutamatergic signaling selectively in withdrawal, which is driven in part by the basolateral amygdala. To gain mechanistic insight into these electrophysiological adaptations, we sequenced the transcriptome of mPFCCRF1+ neurons and found that withdrawal leads to an increase in colony-stimulating factor 1 (CSF1) in this population. We found that selective overexpression of CSF1 in mPFCCRF1+ neurons is sufficient to decrease glutamate transmission, heighten anxiety, and abolish ethanol reinforcement, providing mechanistic insight into the observed mPFCCRF1+ synaptic adaptations in withdrawal that drive these behavioral phenotypes. Together, these findings highlight mPFCCRF1+ neurons as a critical site of enduring adaptations that may contribute to the persistent vulnerability to ethanol misuse in abstinence, and CSF1 as a novel target for therapeutic intervention for withdrawal-related negative affect.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Humanos , Receptores de Hormona Liberadora de Corticotropina/genética , Etanol/farmacología , Alcoholismo/genética , Hormona Liberadora de Corticotropina , Neuronas , Ansiedad
2.
Transl Psychiatry ; 11(1): 2, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414398

RESUMEN

Alcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not fully elucidated. Splicing constitutes a nuclear process of RNA maturation, which results in the formation of the transcriptome. We tested the hypothesis as to whether AUD impairs splicing in the superior frontal cortex (SFC), nucleus accumbens (NA), basolateral amygdala (BLA), and central nucleus of the amygdala (CNA). To evaluate splicing, bam files from STAR alignments were indexed with samtools for use by rMATS software. Computational analysis of affected pathways was performed using Gene Ontology Consortium, Gene Set Enrichment Analysis, and LncRNA Ontology databases. Surprisingly, AUD was associated with limited changes in the transcriptome: expression of 23 genes was altered in SFC, 14 in NA, 102 in BLA, and 57 in CNA. However, strikingly, mis-splicing in AUD was profound: 1421 mis-splicing events were detected in SFC, 394 in NA, 1317 in BLA, and 469 in CNA. To determine the mechanism of mis-splicing, we analyzed the elements of the spliceosome: small nuclear RNAs (snRNAs) and splicing factors. While snRNAs were not affected by alcohol, expression of splicing factor heat shock protein family A (Hsp70) member 6 (HSPA6) was drastically increased in SFC, BLA, and CNA. Also, AUD was accompanied by aberrant expression of long noncoding RNAs (lncRNAs) related to splicing. In summary, alcohol is associated with genome-wide changes in splicing in multiple human brain regions, likely due to dysregulation of splicing factor(s) and/or altered expression of splicing-related lncRNAs.


Asunto(s)
Alcoholismo , ARN Largo no Codificante , Empalme Alternativo , Humanos , Núcleo Accumbens/metabolismo , Empalme del ARN , ARN Largo no Codificante/metabolismo
3.
Mol Psychiatry ; 26(6): 2175-2186, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144357

RESUMEN

Repeated alcohol exposure leads to changes in gene expression that are thought to underlie the transition from moderate to excessive drinking. However, the mechanisms by which these changes are integrated into a maladaptive response that leads to alcohol dependence are not well understood. One mechanism could involve the recruitment of transcriptional co-regulators that bind and modulate the activity of transcription factors. Our results indicate that the transcriptional regulator LMO4 is one such candidate regulator. Lmo4-deficient mice (Lmo4gt/+) consumed significantly more and showed enhanced preference for alcohol in a 24 h intermittent access drinking procedure. shRNA-mediated knockdown of Lmo4 in the nucleus accumbens enhanced alcohol consumption, whereas knockdown in the basolateral amygdala (BLA) decreased alcohol consumption and reduced conditioned place preference for alcohol. To ascertain the molecular mechanisms that underlie these contrasting phenotypes, we carried out unbiased transcriptome profiling of these two brain regions in wild type and Lmo4gt/+ mice. Our results revealed that the transcriptional targets of LMO4 are vastly different between the two brain regions, which may explain the divergent phenotypes observed upon Lmo4 knockdown. Bioinformatic analyses revealed that Oprk1 and genes related to the extracellular matrix (ECM) are important transcriptional targets of LMO4 in the BLA. Chromatin immunoprecipitation revealed that LMO4 bound Oprk1 promoter elements. Consistent with these results, disruption of the ECM or infusion of norbinaltorphimine, a selective kappa opioid receptor antagonist, in the BLA reduced alcohol consumption. Hence our results indicate that an LMO4-regulated transcriptional network regulates alcohol consumption in the BLA.


Asunto(s)
Complejo Nuclear Basolateral , Recompensa , Proteínas Adaptadoras Transductoras de Señales , Consumo de Bebidas Alcohólicas/genética , Animales , Proteínas con Dominio LIM , Ratones , Núcleo Accumbens , Factores de Transcripción/genética
4.
Synapse ; 22(2): 132-8, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8787129

RESUMEN

There is increasing evidence that adenosine (ADO) and dopamine (DA) interact directly in the basal ganglia via actions at ADO A2a and DA D2 receptors, respectively. The purpose of this study was to determine 1) the extent to which these receptors modulate endogenous GABA release in discrete regions of the rat basal ganglia and 2) whether GABA release is modulated by a direct and opposing interaction between ADO A2a and DA D2 receptors. Tissue slices of striatum (STR) containing globus pallidus (GP; STR/GP) and micropunches of STR, GP, and substantia nigra pars reticulata (SNr) were studied. Radioligand binding demonstrated that ADO A1, ADO A2a, and DA D2 receptors were present in each of the tissue preparations with the exception of SNr, in which ADO A2a receptors were not detected. Stimulation of ADO A2a receptors with CGS 21680 (1-10 nM) increased electrically stimulated GABA release in STR/GP slices and GP micropunches. Consistent with the lack of A2a receptors in SNr, CGS 21680 had no effect on GABA release from this region. In contrast, stimulation of DA D2 receptors with N-0437 (1-100 nM) inhibited evoked GABA release from STR/GP slices and both GP and SNr micropunches. The D2-mediated inhibition of GABA release in GP was abolished in the presence of CGS 21680 (10 nM). These experiments demonstrate that stimulation of ADO A2a and DA D2 receptors has opposing effects on endogenous GABA release in STR and GP. These opposing actions may explain the antagonistic interactions between ADO and DA that have been observed in behavioral studies and support the hypothesis that the striatopallidal efferent system is an important anatomical substrate for the A2a/D2 receptor interaction.


Asunto(s)
Ganglios Basales/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Purinérgicos P1/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Antihipertensivos/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Fenetilaminas/farmacología , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/efectos de los fármacos , Tetrahidronaftalenos/farmacología , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA