Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Rev Nephrol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363020

RESUMEN

Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases.

3.
Auton Neurosci ; 255: 103208, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128142

RESUMEN

Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.


Asunto(s)
Interocepción , Riñón , Humanos , Riñón/inervación , Riñón/fisiopatología , Interocepción/fisiología , Animales , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/fisiología , Presión Sanguínea/fisiología , Vías Aferentes/fisiología , Hipertensión/fisiopatología , Enfermedades Renales/fisiopatología
4.
Hypertension ; 81(8): 1811-1821, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38841853

RESUMEN

BACKGROUND: Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1ß is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS: Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS: ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS: These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.


Asunto(s)
Presión Sanguínea , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Hipertensión , Riñón , Ratones Noqueados , Animales , Ratones , Riñón/inervación , Riñón/metabolismo , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/metabolismo , Presión Sanguínea/fisiología , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Masculino , Sistema Nervioso Simpático/fisiopatología , Células Receptoras Sensoriales/metabolismo
5.
Am J Physiol Renal Physiol ; 326(1): F95-F104, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916287

RESUMEN

In the current study, we took advantage of the loss of protection from hypertension in SSCD247-/- rats to characterize the pathological effects of renal T-cells in isolation from the confounding effects of elevated renal perfusion pressure. Male SSCD247-/- and SSCD247+/+ littermates were fed 4.0% NaCl (high salt) diet to induce hypertension. Blood pressure was assessed continuously throughout the time course with radiotelemetry. Urine albumin and protein excretion were assessed on the final day of high salt. Renal injury and medullary transcriptome were assessed after completion of the high salt protocol. In contrast to previous studies, mean arterial pressure was not significantly different between SSCD247-/- and SSCD247+/+ rats. Despite this lack of pressure difference, urinary albumin was significantly lower in SSCD247-/- rats than their wild-type littermates. In the outer medulla, substantially more transcriptomic changes were found to correlate with endpoint blood pressure than with the absence of presence of renal T-cells. We also demonstrated that renal histological damage was driven by elevated renal perfusion pressure rather than the presence of renal T-cells. In conclusion, using the loss of protection from hypertension in SSCD247-/- rats, we demonstrated that renal perfusion pressure has more profound pathological effects on the kidney than renal T-cells. However, renal T-cells, independently of blood pressure, modulate the progression of albuminuria.NEW & NOTEWORTHY In vivo studies in a T-cell-deficient rat model of salt-sensitive hypertension (SSCD247-/- rats) were used to evaluate the role of T-cells on the development of hypertension and renal damage. Detailed physiological and transcriptomic analysis demonstrated no difference in blood pressure between rats with (SSCD247+/+) or without (SSCD247-/-) T-cells. Despite this, albuminuria was significantly lower in SSCD247-/- rats than SSCD247+/+ rats.


Asunto(s)
Hipertensión , Transcriptoma , Ratas , Masculino , Animales , Albuminuria/metabolismo , Linfocitos T/metabolismo , Ratas Endogámicas Dahl , Riñón/metabolismo , Hipertensión/metabolismo , Presión Sanguínea , Cloruro de Sodio Dietético/metabolismo , Albúminas/metabolismo
6.
Curr Opin Nephrol Hypertens ; 32(5): 404-411, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530084

RESUMEN

PURPOSE OF REVIEW: Renal denervation represents a new dimension to hypertension treatment, with multiple device manufacturers seeking premarket FDA approval currently. Interest in the efficacy and safety of the treatment has spurred compelling mechanistic studies into the function of renal nerves and downstream impacts of denervation. RECENT FINDINGS: A trial of the ultrasound Paradise Catheter system (RADIANCE II) found a 6.3 mmHg reduction in SBP relative to sham controls. A trial of the Symplicity Spyral system (SPYRAL HTN-ON MED) found an insignificant reduction in SBP relative to sham controls. Individuals were taking antihypertensive medications during the study, and investigators note the sham group experienced a larger medication burden than the denervated group. Recent preclinical studies have evaluated potential risks of renal denervation, how sympathetic activity broadly is affected, as well as identifying possible biomarkers to identify individuals where denervation would be more successful. SUMMARY: Studies of renal denervation continue to find a robust antihypertensive effect, especially in studies wherein medications are withdrawn. Further investigation into mechanisms and indicators for usage of the technique will be important in identifying the patient population most likely to benefit from usage of renal denervation.


Asunto(s)
Hipertensión , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/cirugía , Antihipertensivos/uso terapéutico , Antihipertensivos/farmacología , Simpatectomía/efectos adversos , Simpatectomía/métodos , Riñón , Desnervación/métodos , Presión Sanguínea , Resultado del Tratamiento
7.
J Med Imaging (Bellingham) ; 7(5): 057501, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33062803

RESUMEN

Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large datasets where variation in staining, imaging, and preparation is difficult to control. The purpose of this study is to quantify performance of a pixelwise segmentation algorithm that was trained using different combinations of weak and strong stroma, epithelium, and lumen labels in a prostate histology dataset. Approach: We have combined weakly labeled datasets generated using simple morphometric techniques and high-quality labeled datasets from human observers in prostate biopsy cores to train a convolutional neural network for use in whole mount prostate labeling pipelines. With trained networks, we characterize pixelwise segmentation of stromal, epithelium, and lumen (SEL) regions on both biopsy core and whole-mount H&E-stained tissue. Results: We provide evidence that by simply training a deep learning algorithm on weakly labeled data generated from rigid morphometric methods, we can improve the robustness of classification over the morphometric methods used to train the classifier. Conclusions: We show that not only does our approach of combining weak and strong labels for training the CNN improve qualitative SEL labeling within tissue but also the deep learning generated labels are superior for cancer classification in a higher-order algorithm over the morphometrically derived labels it was trained on.

8.
Hypertension ; 73(3): 630-639, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595123

RESUMEN

mTOR (mammalian target of rapamycin) signaling has emerged as a key regulator in a wide range of cellular processes ranging from cell proliferation, immune responses, and electrolyte homeostasis. mTOR consists of 2 distinct protein complexes, mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) with distinct downstream signaling events. mTORC1 has been implicated in pathological conditions, such as cancer and type 2 diabetes mellitus in humans, and inhibition of this pathway with rapamycin has been shown to attenuate salt-induced hypertension in Dahl salt-sensitive rats. Several studies have found that the mTORC2 pathway is involved in the regulation of renal tubular sodium and potassium transport, but its role in hypertension has remained largely unexplored. In the present study, we, therefore, determined the effect of mTORC2 inhibition with compound PP242 on salt-induced hypertension and renal injury in salt-sensitive rats. We found that PP242 not only completely prevented but also reversed salt-induced hypertension and kidney injury in salt-sensitive rats. PP242 exhibited potent natriuretic actions, and chronic administration tended to produce a negative Na+ balance even during high-salt feeding. The results indicate that mTORC2 and the related downstream associated pathways play an important role in regulation of sodium balance and arterial pressure regulation in salt-sensitive rats. Therapeutic suppression of the mTORC2 pathway represents a novel pathway for the potential treatment of hypertension.


Asunto(s)
Lesión Renal Aguda/prevención & control , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Inmunosupresores/farmacología , Masculino , Ratas , Ratas Endogámicas Dahl , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio Dietético/toxicidad
10.
J Am Soc Nephrol ; 29(8): 2081-2088, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29921718

RESUMEN

Background Histologic examination of fixed renal tissue is widely used to assess morphology and the progression of disease. Commonly reported metrics include glomerular number and injury. However, characterization of renal histology is a time-consuming and user-dependent process. To accelerate and improve the process, we have developed a glomerular localization pipeline for trichrome-stained kidney sections using a machine learning image classification algorithm.Methods We prepared 4-µm slices of kidneys from rats of various genetic backgrounds that were subjected to different experimental protocols and mounted the slices on glass slides. All sections used in this analysis were trichrome stained and imaged in bright field at a minimum resolution of 0.92 µm per pixel. The training and test datasets for the algorithm comprised 74 and 13 whole renal sections, respectively, totaling over 28,000 glomeruli manually localized. Additionally, because this localizer will be ultimately used for automated assessment of glomerular injury, we assessed bias of the localizer for preferentially identifying healthy or damaged glomeruli.Results Localizer performance achieved an average precision and recall of 96.94% and 96.79%, respectively, on whole kidney sections without evidence of bias for or against glomerular injury or the need for manual preprocessing.Conclusions This study presents a novel and robust application of convolutional neural nets for the localization of glomeruli in healthy and damaged trichrome-stained whole-renal section mounts and lays the groundwork for automated glomerular injury scoring.


Asunto(s)
Compuestos Azo/farmacología , Eosina Amarillenta-(YS)/farmacología , Enfermedades Renales/patología , Glomérulos Renales/patología , Verde de Metilo/farmacología , Técnicas de Cultivo de Tejidos/métodos , Algoritmos , Animales , Biopsia con Aguja , Inmunohistoquímica , Ratas , Valores de Referencia , Coloración y Etiquetado/métodos
11.
Physiol Genomics ; 50(6): 440-447, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602296

RESUMEN

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inflamación/genética , Médula Renal/fisiología , Médula Renal/fisiopatología , Redes y Vías Metabólicas/genética , Perfusión , Animales , Teorema de Bayes , Respiración de la Célula , Hipertensión/genética , Metaboloma , Metabolómica , Mitocondrias/metabolismo , Ratas Endogámicas Dahl , Análisis de Regresión , Programas Informáticos
12.
Hypertension ; 68(5): 1139-1144, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27672030

RESUMEN

Despite the striking differences between male and female physiology, female physiology is understudied. In response, the National Institutes of Health is promulgating new policies to increase the use of female organisms in preclinical research. Females are commonly believed to have greater variability than males because of the estrous cycle, but recent studies call this belief into question. Effects of estrous cycling on mean arterial pressure were assessed in female Dahl S rats using telemetry and vaginal cytometry and found that estrous cycling did not affect mean arterial pressure magnitude or variance. Data from the PhysGen arm of the Program for Genomic Applications was used to compare male and female variance and coefficient of variation in 142 heart, lung, vascular, kidney, and blood phenotypes, each measured in hundreds to thousands of individual rats from over 50 inbred strains. Seventy-four of 142 phenotypes from this data set demonstrated a sex difference in variance; however, 59% of these phenotypes exhibited greater variance in male rats rather than female. Remarkably, a retrospective power analysis demonstrated that only 16 of 74 differentially variable phenotypes would be detected when using an experimental cohort large enough to detect a difference in magnitude. No overall difference in coefficient of variation between male and female rats was detected when analyzing these 142 phenotypes. We conclude that variability of 142 traits in male and female rats is similar, suggesting that differential treatment of males and females for the purposes of experimental design is unnecessary until proven otherwise, rather than the other way around.


Asunto(s)
Presión Sanguínea/fisiología , Ciclo Estral/fisiología , Caracteres Sexuales , Animales , Corticosterona/sangre , Ciclo Estral/genética , Femenino , Masculino , Modelos Animales , Fenotipo , Ratas , Ratas Endogámicas Dahl , Tamaño de la Muestra , Sensibilidad y Especificidad
13.
Hypertension ; 67(2): 440-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26644237

RESUMEN

This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión/genética , NADPH Oxidasas/genética , ARN/genética , Animales , Presión Sanguínea , Western Blotting , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , NADPH Oxidasa 4 , NADPH Oxidasas/biosíntesis , Estrés Oxidativo , Reacción en Cadena de la Polimerasa , Ratas , Ratas Endogámicas Dahl
14.
Physiol Genomics ; 48(1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26534937

RESUMEN

A 1.37 Mbp region of chromosome 13 previously identified by exclusion mapping was consistently associated with a reduction of salt-induced hypertension in the Dahl salt-sensitive (SS) rat. This region contained five genes that were introgressed from the salt-insensitive Brown Norway (BN) rat. The goal of the present study was to further narrow that region to identify the gene(s) most likely to protect from salt-induced hypertension. The studies yielded a subcongenic SS rat strain containing a 0.71 Mbp insert from BN (26-P strain) in which salt-induced hypertension was reduced by 24 mmHg. The region contained two protein-coding genes (Astn1 and Pappa2) and a microRNA (miR-488). Pappa2 mRNA in the renal cortex of the protected 26-P was 6- to 10-fold greater than in SS fed a 0.4% NaCl diet but was reduced to levels observed in SS when fed 8.0% NaCl diet for 7 days. Compared with brain nuclei (NTS, RVLM, CVLM) and the adrenal gland, Pappa2 in the renal cortex was the only gene found to be differentially expressed between SS and 26-P and that responded to changes of salt diet. Immunohistochemistry studies found Pappa2 localized in the cytosol of the epithelial cells of the cortical thick ascending limbs. In more distal segments of the renal tubules, it was observed within tubular lumens and most notably bound to the apical membranes of the intercalated cells of collecting ducts. We conclude that we have identified a variant form of Pappa2 that can protect against salt-induced hypertension in the Dahl S rat.


Asunto(s)
Hipertensión/metabolismo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Glándulas Suprarrenales/metabolismo , Albuminuria/complicaciones , Albuminuria/genética , Albuminuria/fisiopatología , Animales , Emparejamiento Base/genética , Presión Sanguínea , Tronco Encefálico/metabolismo , Núcleo Celular/metabolismo , Cromosomas de los Mamíferos/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Genoma , Hipertensión/complicaciones , Hipertensión/genética , Hipertensión/fisiopatología , Riñón/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas Dahl , Análisis de Secuencia de ADN , Simportadores del Cloruro de Sodio/metabolismo
15.
Antimicrob Agents Chemother ; 56(5): 2428-34, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22314522

RESUMEN

Dihydroquinoline derivative OSU-40 (1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate) is selectively potent against Trypanosma brucei rhodesiense in vitro (50% inhibitory concentration [IC(50)], 14 nM; selectivity index, 1,700) and has been proposed to cause the formation of reactive oxygen species (ROS) in African trypanosomes (J. Fotie et al., J. Med. Chem. 53:966-982, 2010). In the present study, we sought to provide further support for the hypothesis that OSU-40 kills trypanosomes through oxidative stress. Inducible RNA interference (RNAi) was applied to downregulate key enzymes in parasite antioxidant defense, including T. brucei trypanothione synthetase (TbTryS) and superoxide dismutase B (TbSODB). Both TbTryS RNAi-induced and TbSODB RNAi-induced cells showed impaired growth and increased sensitivity toward OSU-40 by 2.4-fold and 3.4-fold, respectively. Decreased expression of key parasite antioxidant enzymes was thus associated with increased sensitivity to OSU-40, consistent with the hypothesis that OSU-40 acts through oxidative stress. Finally, the dose-dependent formation of free radicals was observed after incubation of T. brucei with OSU-40 utilizing electron spin resonance (ESR) spectroscopy. These data support the notion that the mode of antitrypanosomal action for this class of compounds is to induce oxidative stress.


Asunto(s)
Acetatos/farmacología , Amida Sintasas/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Compuestos de Quinolinio/farmacología , Superóxido Dismutasa/antagonistas & inhibidores , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Amida Sintasas/metabolismo , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Concentración 50 Inhibidora , Estrés Oxidativo/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Trypanosoma brucei rhodesiense/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
16.
Cancer Biol Ther ; 12(9): 837-45, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21885917

RESUMEN

Cisplatin resistance is a major obstacle in the treatment of ovarian cancer. Drug combinations with synergistic or complementary functions are a promising strategy to overcome this issue. We studied the anticancer efficacy of a novel compound, HO-3867, used in combination with cisplatin against chemotherapy-resistant ovarian cancer. A2780R cells, a cisplatin-resistant human ovarian cancer cell line, were exposed to 1, 5, or 10 uM of HO-3867 alone or in combination with cisplatin (10 ug/ml) for 24 hours. Cell viability (MTT), proliferation (BrdU), cell-cycle analysis (FACS), and protein expression (western blot) were used for in vitro studies. STAT3 overexpression was performed using transfected STAT3 cDNA. In vivo studies used cisplatin-resistant xenograft tumors grown in nude mice and treated with 100-ppm HO-3867 and weekly injections of 4-mg/kg cisplatin. HO-3867/cisplatin combination treatment significantly inhibited cisplatin-resistant cell proliferation in a concentration-dependent manner. The inhibition was associated with increased expression of p53 and p21, and decreased expression of cdk5 and cyclin D1. Apoptosis was induced by activation of Bax, cytochrome c release, and stimulated cleavage of caspase-9, caspase-3, and PARP. Overexpression of STAT3 decreased the HO-3867-induced apoptosis. The combination treatment significantly inhibited the growth of cisplatin-resistant xenograft tumors with significant downregulation of pSTAT3, and without apparent toxicity to healthy tissues. The combination treatment exhibited synergistic anticancer efficacy, which appears largely due to HO-3867-induced downregulation of pSTAT3. The results, combined with the previously-reported safety features of HO-3867, suggest the potential use of this compound as a safe and effective adjuvant for the treatment of ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Curcumina/farmacología , Neoplasias Ováricas/metabolismo , Piperidonas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Cisplatino/toxicidad , Curcumina/análogos & derivados , Curcumina/uso terapéutico , Curcumina/toxicidad , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Piperidonas/uso terapéutico , Piperidonas/toxicidad , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Pharmacol Exp Ther ; 339(2): 350-7, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21799049

RESUMEN

Doxorubicin (DOX) is a drug commonly used for the treatment of cancer. The development of resistance to DOX is common, and high cumulative doses cause potentially lethal cardiac side effects. HO-3867 (3,5-bis(4-fluorobenzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxy-pyrrol-3-yl)methyl]piperidin-4-one), a synthetic curcumin analog, has been shown to exhibit both anticancer and cardioprotective effects. However, its cardioprotection in the setting of a conventional cancer therapy has not been established. This work investigated the use of HO-3867 and DOX to achieve a complementary outcome, i.e., increased toxicity toward cancer cells, and reduced cardiac toxicity. Combination treatment was investigated using DOX-resistant MCF-7 breast cancer cells [MCF-7 multidrug-resistant (MDR)] and BALB/c mice. Lower doses of HO-3867 and DOX (5 and 2.5 µM, respectively) reduced viability of MCF-7 MDR cells to an extent significantly greater than that when either drug was used alone, an effect equivalent to that induced by exposure to 50 µM DOX. In normal cardiac cells, the loss of viability from combination treatment was significantly lower than that induced by 50 µM DOX. Increases in apoptotic markers, e.g., cleaved caspase-3, and decreases in fatty acid synthase and pAkt expressions were observed by Western blotting. Mice treated with both HO-3867 and DOX showed significant improvement in cardiac functional parameters compared with mice treated with DOX alone. Reduced expression of Bcl-2 and pAkt was observed in mice treated with DOX alone, whereas mice given combination treatment showed levels similar to control. The study indicates that combination treatment of HO-3867 and DOX is a viable option for treatment of cancer with reduced cardiotoxic side effects.


Asunto(s)
Antineoplásicos/toxicidad , Cardiotónicos/farmacología , Doxorrubicina/toxicidad , Piperidonas/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aorta/citología , Aorta/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Cardiotónicos/administración & dosificación , Cardiotónicos/uso terapéutico , Caspasas/biosíntesis , Línea Celular Tumoral , Ciclinas/antagonistas & inhibidores , Ciclinas/biosíntesis , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ecocardiografía , Femenino , Corazón/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Piperidonas/administración & dosificación , Piperidonas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Receptor fas/antagonistas & inhibidores , Receptor fas/biosíntesis
18.
Subst Use Misuse ; 46(2-3): 264-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21303246

RESUMEN

This literature review considers the historical significance, emergence of, and interplay between the HIV and illicit drug use epidemics among gay, bisexual, and other men who have sex with men (MSM) in New York City (NYC). The continual rise in HIV infections in recent years among MSM, particularly among young MSM (YMSM), commands a need for the examination of the effectiveness of current HIV prevention strategies and a more comprehensive understanding of the complex biopsychosocial influences that place YMSM at risk. A chronological perspective of both the HIV and illicit drug use epidemics affecting NYC MSM is presented, followed by a review of the existing research on the synergistic relation between the two. Special consideration is given to the patterns and interconnectivity between HIV, substance use, and housing instability specific to YMSM, as they represent the demographic currently at greatest risk for HIV transmission in NYC. Thereafter, an overview of treatment research is provided. We conclude by offering recommendations for future research and best practices as we move forward in an attempt to reduce the incidence of HIV transmission.


Asunto(s)
Infecciones por VIH/epidemiología , Homosexualidad Masculina/estadística & datos numéricos , Trastornos Relacionados con Sustancias/epidemiología , Adulto , Humanos , Masculino , Ciudad de Nueva York , Asunción de Riesgos , Conducta Sexual
19.
Mol Cancer Res ; 8(9): 1188-97, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20713491

RESUMEN

Fatty acid synthase (FAS) and focal adhesion kinase (FAK), which are overexpressed in a variety of human epithelial tumors, play a key role in the migration and invasion of cancer cells. Hence, strategies targeted at inhibiting the FAS/FAK proteins may have therapeutic potential for cancer treatment. The goal of the present study was to determine the effect of HO-3867, a synthetic compound, on the migratory ability of ovarian cancer cells and to understand the mechanistic pathways including the involvement of FAS, FAK, and associated signaling proteins. The study was done using two established human ovarian cancer cell lines, A2780 and SKOV3. Incubation with 10 µmol/L HO-3867 for 24 hours significantly inhibited the native as well as the vascular endothelial growth factor (VEGF)-mediated migration and invasion of the cells. HO-3867 significantly attenuated FAS and FAK protein levels apparently through accelerated ubiquitin-dependent degradation, as shown by a clear downregulation of isopeptidase USP2a. Exposure of cells to HO-3867 also significantly inhibited FAS activity and mRNA levels and a number of downstream proteins, including phospho-extracellular signal-regulated kinase 1/2, phospho-human epidermal growth factor receptor 1, sterol regulatory element binding protein 1, VEGF, and matrix metalloproteinase 2. Western blot and immunohistochemical analyses of A2780 xenograft tumors in mice treated with HO-3867 showed significant reduction in FAS, FAK, VEGF, and downstream protein levels when compared with the untreated control. Collectively, the results showed that HO-3867 suppressed the migration and invasion of ovarian cancer cells by inhibiting the expression or activity of FAS and FAK proteins. The study suggests that molecular targeting of FAS and FAK by HO-3867 may be a potential strategy for ovarian cancer therapy.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ácido Graso Sintasas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Piperidonas/farmacología , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Invasividad Neoplásica/prevención & control , Neoplasias Ováricas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Biol Ther ; 10(10): 1027-32, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20798598

RESUMEN

Curcumin, a naturally-occurring compound found in the rhizome of Curcuma longa plant, is known for its antitumor activities. However, its clinical efficacy is limited due to poor bioabsorption. A new class of synthetic analogs of curcumin, namely diarylidenylpiperidone (DAP), has been developed with substantially higher anticancer activity than curcumin. However, its cellular uptake and bioabsorption have not been evaluated. In this study we have determined the absorption of a representative DAP compound, HO-3867, using optical and electron paramagnetic resonance spectrometry. The cellular uptake of HO-3867 was measured in a variety of cancer cell lines. HO-3867 was taken in cells within 15 minutes of exposure and its uptake was more than 100-fold higher than curcumin. HO-3867 was also retained in cells in an active form for 72 hours and possibly longer. HO-3867 was substantially cytotoxic to all the cancer cells tested. However, there was no direct correlation between cellular uptake and cytotoxicity suggesting that the cytotoxic mechanisms could be cell-type specific. When administered to rats by intraperitoneal injection, significantly high levels of HO-3867 were found in the liver, kidney, stomach, and blood after 3 hours. Also, significant accumulation of HO-3867 was found in murine tumor xenografts with a dose-dependent inhibition of tumor growth. The results suggest that the curcumin analog has substantially higher bioabsorption when compared to curcumin.


Asunto(s)
Antineoplásicos/uso terapéutico , Curcumina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Piperidonas/farmacocinética , Piperidonas/uso terapéutico , Animales , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Halogenación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas , Ratas Wistar , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...