Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0302274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662796

RESUMEN

In recent years, immune checkpoint inhibitors have proved immense clinical progression in the treatment of certain cancers. The efficacy of immune checkpoint inhibitors is correlated with mismatch repair system deficiency and is exceptionally administered based exclusively on this biological mechanism independent of the cancer type. The promising effect of immune checkpoint inhibitors has left an increasing demand for analytical tools evaluating the mismatch repair status. The analysis of microsatellite instability (MSI), reflecting an indirect but objective manner the inactivation of the mismatch repair system, plays several roles in clinical practice and, therefore, its evaluation is of high relevance. Analysis of MSI by PCR followed by fragment analysis on capillary electrophoresis remains the gold standard method for detection of a deficient mismatch repair system and thereby treatment with immune checkpoint inhibitors. Novel technologies have been applied and concepts such as tumor mutation burden have been introduced. However, to date, most of these technologies require high costs or the need of matched non-tumor tissue as internal comparator. In this study, we present a novel, one-instrument, fast, and objective method for the detection of MSI (MicroSight® MSI 1-step HRM Analysis), which does not depend on the use of matched non-tumor tissue. The assay analyzes five well-described mononucleotide microsatellite sequences by real-time PCR followed by high-resolution melt and evaluates microsatellite length variations via PCR product melting profiles. The assay was evaluated using two different patient cohorts and evaluation included several DNA extraction methodologies, two different PCR platforms, and an inter-laboratory ring study. The MicroSight® MSI assay showed a high repeatability regardless of DNA extraction method and PCR platform, and a 100% agreement of the MSI status with PCR fragment analysis methods applied as clinical comparator.


Asunto(s)
Inestabilidad de Microsatélites , Humanos , Reparación de la Incompatibilidad de ADN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Femenino , Masculino , Repeticiones de Microsatélite/genética
2.
Cells ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334668

RESUMEN

Glioblastoma multiforme (GBM) is usually treated with surgery followed by adjuvant partial radiotherapy combined with temozolomide (TMZ) chemotherapy. Recent studies demonstrated a better survival and good response to TMZ in methylguanine-DNA methyltransferase (MGMT)-methylated GBM cases. However, approximately 20% of patients with MGMT-unmethylated GBM display an unexpectedly favorable outcome. Therefore, additional mechanisms related to the TMZ response need to be investigated. As such, we decided to investigate the clinical relevance of six miRNAs involved in brain tumorigenesis (miR-181c, miR-181d, miR-21, miR-195, miR-196b, miR-648) as additional markers of response and survival in patients receiving TMZ for GBM. We evaluated miRNA expression and the interplay between miRNAs in 112 IDH wt GBMs by applying commercial assays. Then, we correlated the miRNA expression with patients' clinical outcomes. Upon bivariate analyses, we found a significant association between the expression levels of the miRNAs analyzed, but, more interestingly, the OS curves show that the combination of low miR-648 and miR-181c or miR-181d expressions is associated with a worse prognosis than cases with other low-expression miRNA pairs. To conclude, we found how specific miRNA pairs can influence survival in GBM cases treated with TMZ.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , Glioblastoma/metabolismo , MicroARNs/metabolismo , Dacarbazina/uso terapéutico , Relevancia Clínica , Temozolomida/farmacología , Temozolomida/uso terapéutico
3.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254788

RESUMEN

BACKGROUND: In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS: We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS: Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS: In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.

4.
Nat Commun ; 14(1): 5153, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620381

RESUMEN

DNA methylation is important for gene expression and alterations in DNA methylation are involved in the development and progression of cancer and other major diseases. Analysis of DNA methylation patterns has until now been dependent on either a chemical or an enzymatic pre-treatment, which are both time consuming procedures and potentially biased due to incomplete treatment. We present a qPCR technology, EpiDirect®, that allows for direct PCR quantification of DNA methylations using untreated DNA. EpiDirect® is based on the ability of Intercalating Nucleic Acids (INA®) to differentiate between methylated and unmethylated cytosines in a special primer design. With this technology, we develop an assay to analyze the methylation status of a region of the MGMT promoter used in treatment selection and prognosis of glioblastoma patients. We compare the assay to two bisulfite-relying, methyl-specific PCR assays in a study involving 42 brain tumor FFPE samples, revealing high sensitivity, specificity, and the clinical utility of the method.


Asunto(s)
Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , ADN/metabolismo , Metilación de ADN , Temperatura , Oligonucleótidos/metabolismo , Islas de CpG
5.
PLoS One ; 18(2): e0281558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36758042

RESUMEN

Mutations in BRAF exon 15 lead to conformational changes in its activation loops, resulting in constitutively active BRAF proteins which are implicated in the development of several human cancer types. Different BRAF inhibitors have been developed and introduced in clinical practice. Identification of BRAF mutations influences the clinical evaluation, treatment, progression and for that reason a sensitive and specific identification of BRAF mutations is on request from the clinic. Here we present the SensiScreen® FFPE BRAF qPCR Assay that uses a novel real-time PCR-based method for BRAF mutation detection based on PentaBases proprietary DNA analogue technology designed to work on standard real-time PCR instruments. The SensiScreen® FFPE BRAF qPCR Assay displays high sensitivity, specificity, fast and easy-to-use. The SensiScreen® FFPE BRAF qPCR Assay was validated on two different FFPE tumour biopsy cohorts, one cohort included malignant melanoma patients previously analyzed by the Cobas® 4800 BRAF V600 Mutation Test, and one cohort from colorectal cancer patients previously analyzed by mutant-enriched PCR and direct sequencing. All BRAF mutant malignant melanoma patients were confirmed with the SensiScreen® FFPE BRAF qPCR Assay and additional four new mutations in the malignant melanoma cohort were identified. All the previously identified BRAF mutations in the colorectal cancer patients were confirmed, and additional three new mutations not identified with direct sequencing were detected. Also, one new BRAF mutation not previously identified with ME-PCR was found. Furthermore, the SensiScreen® FFPE BRAF qPCR Assay identified the specific change in the amino acid. The SensiScreen® FFPE BRAF qPCR Assay will contribute to a more specific, time and cost saving approach to better identify and characterize mutations in patients affected by cancer, and consequently permits a better BRAF characterization that is fundamental for therapy decision.


Asunto(s)
Neoplasias Colorrectales , Melanoma , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Análisis Mutacional de ADN/métodos , Melanoma/metabolismo , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Neoplasias Colorrectales/genética , Melanoma Cutáneo Maligno
6.
J Clin Med ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36556139

RESUMEN

Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.

7.
Cancers (Basel) ; 14(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36077640

RESUMEN

In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA