Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400144, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727608

RESUMEN

Aqueous iron solutions generally undergo spontaneous hydrolysis followed by aggregation resulting in the precipitation of nanocrystalline oxyhydroxide minerals. The mechanism of nucleation of such multinuclear oxyhydroxide clusters are unclear due to limited experimental evidence. Here, we investigate the mechanistic pathway of dimerization of Fe(III) ions using density functional theory (DFT) in aqueous medium considering effects of other ligands. Two hydrolyzed monomeric Fe(III) ions in aqueous medium may react to form two closely related binuclear products, the µ-oxo and the dihydroxo Fe2 dimer. Our studies indicate that the water molecules in the second coordination sphere and those co-ordinated to the Fe(III) ion, both participate in the dimerization process. The proposed mechanism effectively explains the formation of dihydroxo and µ-oxo Fe2 dimers with interconversion possibilities, for the first time. Results show, with only water molecules present in the second co-ordination sphere, dihydroxo Fe2 dimer is the thermodynamically and kinetically favored product with a low activation free energy. We calculated the step-wise reaction free energies of dimerization in the presence of nitrate ions in the first and second coordination sphere of Fe(III) ion separately, which shows that with nitrate ions in the second co-ordination sphere, the µ-oxo Fe2 dimer is the kinetically favored product.

2.
Inorg Chem ; 63(16): 7255-7265, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587285

RESUMEN

Iron oxyhydroxide, a natural nanophase of iron found in the environment, plays a crucial role in regulating surface and groundwater composition. Recent research proposes that within the nonclassical prenucleation cluster growth model, subnanometer-sized clusters (olation clusters/Fe13 δ-Keggin oxolation clusters) might act as the prenucleation clusters (PNCs) of ferrihydrite or iron oxyhydroxide solid phase. However, these clusters are difficult to characterize as they are only observable momentarily in low-pH, high-Fe concentration solutions before agglomerating into extended solids, keeping the controversy over the true nature of the PNCs alive. In this study, we introduce large quantities of zinc acetate salt (ZA) into iron chloride solutions at the olation-oxolation boundary (3.6 mM Fe3+ at pH ∼2.6). Remarkably, this manipulation is found to alter the structural arrangement of these subnanometer clusters before blocking them in isolation for hours, even at pH 6, where extended iron oxyhydroxide phases typically precipitate. On the other hand, controlled addition of ZA allows partial unblocking, leading to anisotropic agglomeration into cylindrical rod-like structures. Experimental techniques such as synchrotron-based small-angle X-ray scattering, X-ray absorption spectroscopy, high-resolution transmission electron microscopy (TEM), and cryo-TEM, along with density functional theory (DFT) calculations, reveal the nature of the structural rearrangement and the crucial role of Zn2+ ions in cluster stabilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...