Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256111

RESUMEN

Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100ß) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.


Asunto(s)
Plexo Mientérico , Enfermedad de Parkinson , Masculino , Ratas , Animales , Ratas Wistar , Flavonoides/farmacología , Flavonoides/uso terapéutico , Rutina/farmacología , Rutina/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas
2.
Neurotox Res ; 41(3): 224-241, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36723781

RESUMEN

Causes of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1ß (IL-1ß) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Animales , Ratones , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Flavonoides/farmacología , Rutina/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/metabolismo , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
3.
Cell Mol Neurobiol ; 43(1): 265-281, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34988761

RESUMEN

Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1ß, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1ß, TNF-α, CCL2, CCL5 and CCR2.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Masculino , Animales , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Ratas Wistar , Oxidopamina , Enfermedades Neuroinflamatorias , Dopamina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas Dopaminérgicas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo
4.
Neurotoxicology ; 82: 89-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232743

RESUMEN

We have previously shown that JM-20, a new chemical entity consisting of 1,5-benzodiazepine fused to a dihydropyridine moiety, protects against rotenone-induced neurotoxicity in an experimental model of Parkinson's disease (PD). The aim of this study was to investigate the effect of a novel hybrid molecule, named JM-20, in in vitro and in vivo models of PD induced by 6-hydroxydopamine (6-OHDA). PC-12 cells were exposed to 6-OHDA and treated with JM-20. Protection against mitochondrial damage induced by 6-OHDA was also investigated using isolated rat brain mitochondria. We found that JM-20 protected PC-12 cells against cytotoxicity induced by 6-OHDA and inhibited hydrogen peroxide generation, mitochondrial swelling and membrane potential dissipation. For in vivo experiments, adult male Wistar rats were lesioned in the substantia nigra pars compacta (SNpc) by 6-OHDA administration. JM-20 was orally administered (10, 20 or 40 mg/kg), intragastric via gavage, 24 h after surgery and daily for seven days. Treatment with JM-20 significantly reduced the percentage of motor asymmetry and increased vertical exploration. It improved the redox state of the SNpc and the striatal tissue of these animals. Also, JM-20 reduced glial fibrillary acidic protein overexpression and increased tyrosine hydroxylase-positive cell number, both in SNpc. Altogether, these results demonstrate that JM-20 is a potential neuroprotective agent against 6-OHDA-induced damage in both in vitro and in vivo models. The mechanism underlying JM-20 neuroprotection against 6-OHDA appears to be associated with the control of oxidative injury and mitochondrial impairment.


Asunto(s)
Antioxidantes/farmacología , Benzodiazepinas/farmacología , Encéfalo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Niacina/análogos & derivados , Oxidopamina/toxicidad , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Masculino , Mitocondrias/metabolismo , Niacina/farmacología , Prueba de Campo Abierto/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células PC12/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA