Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 241: 106499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604378

RESUMEN

The androgen receptor (AR) is a steroid activated transcription factor which recognizes DNA motifs resembling inverted repeats of a conserved 5'-AGAACA-3'-like hexanucleotides separated by a three-nucleotide spacer from a similar, but less conserved hexanucleotide. Here, we report the structures of the human AR DNA binding domain (DBD) bound to two natural AREs (C3 and MTV) in head-to-head dimer conformations, diffracting at 2.05 Šand 2.25 Å, respectively. These structures help to explain the impact of androgen insensitivity mutations on the structure integrity, DNA binding and DBD dimerization. The binding affinity of the AR DBD to different DNA motifs were measured by the BioLayer Interferometry (BLI) and further validated by Molecular Dynamics (MD) simulations. This shows that the high binding affinity of the first DBD to the upstream 5'-AGAACA-3' motif induces the cooperative binding of the second DBD to the second hexanucleotide. Our data indicate identical interaction of the DBDs to the upstream hexanucleotides, while forming an induced closer contact of the second DBD on the non-canonical hexanucleotides. The variation in binding between the DBD monomers are the result of differences in DNA occupancy, protein-protein interactions, DNA binding affinity, and DNA binding energy profiles. We propose this has functional consequences.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Unión Proteica , Receptores Androgénicos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/genética , Humanos , ADN/metabolismo , ADN/química , Sitios de Unión , Conformación Proteica , Dominios Proteicos
2.
Protein Sci ; 32(4): e4599, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806291

RESUMEN

We report the discovery of the androgen receptor missense mutation V770D, that was found in two sisters suffering from complete androgen insensitivity. Experimental validation of AR V770 variants demonstrated that AR V770D was transcriptionally inactive due to the inability to dimerize and a reduced ligand binding affinity. The more conservative AR V770A variant showed a dimerization defect at low levels of DHT with a partial recovery of the transcriptional activity and of the receptor's ability to dimerize when increasing the DHT levels. With V770 located outside of the proposed LBD dimerization interface of the AR LBD homodimer crystal structure, the effects of the V770A mutation on AR dimerization were unexpected. We therefore explored whether the AR LBD dimerization interface would be better described by an alternative dimerization mode based on available human homodimeric LBD crystal structures of other nuclear receptors. Superposition of the monomeric AR LBD in the homodimeric crystal structures of GR, PR, ER, CAR, TRß, and HNF-4α showed that the GR-like LBD dimer model was energetically the most stable. Moreover, V770 was a key energy residue in the GR-like LBD dimer while it was not involved in the stabilization of the AR LBD homodimer according to the crystal structure. Additionally, the observation that 4 AIS mutations impacted the stability of the AR LBD dimer while 16 mutations affected the GR-like LBD dimer, suggested that the AR LBD dimer crystal is a snapshot of a breathing AR LBD homodimer that can transition into the GR-like LBD dimer model.


Asunto(s)
Síndrome de Resistencia Androgénica , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/química , Síndrome de Resistencia Androgénica/genética , Ligandos , Unión Proteica/genética , Mutación Missense , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...