RESUMEN
Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.
Asunto(s)
Ríos , Aguas del Alcantarillado , Humanos , Ríos/microbiología , Aguas del Alcantarillado/microbiología , Wisconsin , Monitoreo del Ambiente , Bacterias , Heces/microbiología , Microbiología del AguaRESUMEN
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Asunto(s)
Herbicidas , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/toxicidad , Plaguicidas/análisis , Monitoreo del Ambiente/métodos , Lagos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Herbicidas/análisisRESUMEN
Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific. Human-associated bacteria are wastewater specific but require discrete sampling and laboratory analyses, introducing latency. Human sewage has fluorescence and absorbance properties different than those of natural waters. To assist real-time field sensor development, this study investigated optical properties for use as surrogates for human-associated bacteria to estimate wastewater prevalence in environmental waters. Three spatial scales were studied: Eight watershed-scale sites, five subwatershed-scale sites, and 213 storm sewers and open channels within three small watersheds (small-scale sites) were sampled (996 total samples) for optical properties, human-associated bacteria, fecal indicator bacteria, and, for selected samples, human viruses. Regression analysis indicated that bacteria concentrations could be estimated by optical properties used in existing field sensors for watershed and subwatershed scales. Human virus occurrence increased with modeled human-associated bacteria concentration, providing confidence in these regressions as surrogates for wastewater contamination. Adequate regressions were not found for small-scale sites to reliably estimate bacteria concentrations likely due to inconsistent local sanitary sewer inputs.
Asunto(s)
Aguas Residuales , Microbiología del Agua , Bacterias , Monitoreo del Ambiente , Heces , Humanos , Aguas del Alcantarillado , AguaRESUMEN
Waterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk-based screening approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, fire retardants, pharmaceuticals, and fragrances. Hazard quotients were calculated by dividing detected concentrations by biological effect concentrations reported in the ECOTOX Knowledgebase (toxicity quotients) or ToxCast database (exposure-activity ratios [EARs]). Mixture effects were estimated by summation of EAR values for chemicals that influence ToxCast assays with common gene targets. Nineteen chemicals-atrazine, N,N-diethyltoluamide, di(2-ethylhexyl)phthalate, dl-menthol, galaxolide, p-tert-octylphenol, 3 organochlorine pesticides, 3 PAHs, 4 pharmaceuticals, and 3 phosphate flame retardants-had toxicity quotients >0.1 or EARs for individual chemicals >10-3 at 10% or more of the sites monitored. An additional 4 chemicals (tributyl phosphate, triethyl citrate, benz[a]anthracene, and benzo[b]fluoranthene) were present in mixtures with EARs >10-3 . To evaluate potential apical effects and biological endpoints to monitor in exposed wildlife, in vitro bioactivity data were compared to adverse outcome pathway gene ontology information. Endpoints and effects associated with endocrine disruption, alterations in xenobiotic metabolism, and potentially neuronal development would be relevant to monitor at the priority sites. The EAR threshold exceedance for many chemical classes was correlated with urban land cover and wastewater effluent influence, whereas herbicides and fire retardants were also correlated to agricultural land cover. Environ Toxicol Chem 2021;40:2165-2182. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Asunto(s)
Retardadores de Llama , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Retardadores de Llama/análisis , Lagos/química , Plaguicidas/análisis , Plaguicidas/toxicidad , Preparaciones Farmacéuticas , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Chemical monitoring data were collected in surface waters from 57 Great Lakes tributaries from 2010 to 13 to identify chemicals of potential biological relevance and sites at which these chemicals occur. Traditional water-quality benchmarks for aquatic life based on in vivo toxicity data were available for 34 of 67 evaluated chemicals. To expand evaluation of potential biological effects, measured chemical concentrations were compared to chemical-specific biological activities determined in high-throughput (ToxCast) in vitro assays. Resulting exposure-activity ratios (EARs) were used to prioritize the chemicals of greatest potential concern: 4nonylphenol, bisphenol A, metolachlor, atrazine, DEET, caffeine, tris(2butoxyethyl) phosphate, tributyl phosphate, triphenyl phosphate, benzo(a)pyrene, fluoranthene, and benzophenone. Water-quality benchmarks were unavailable for five of these chemicals, but for the remaining seven, EAR-based prioritization was consistent with that based on toxicity quotients calculated from benchmarks. Water-quality benchmarks identified three additional PAHs (anthracene, phenanthrene, and pyrene) not prioritized using EARs. Through this analysis, an EAR of 10-3 was identified as a reasonable threshold above which a chemical might be of potential concern. To better understand apical hazards potentially associated with biological activities captured in ToxCast assays, in vitro bioactivity data were matched with available adverse outcome pathway (AOP) information. The 49 ToxCast assays prioritized via EAR analysis aligned with 23 potentially-relevant AOPs present in the AOP-Wiki. Mixture effects at monitored sites were estimated by summation of EAR values for multiple chemicals by individual assay or individual AOP. Commonly predicted adverse outcomes included impacts on reproduction and mitochondrial function. The EAR approach provided a screening-level assessment for evidence-based prioritization of chemicals and sites with potential for adverse biological effects. The approach aids prioritization of future monitoring activities and provides testable hypotheses to help focus those efforts. This also expands the fraction of detected chemicals for which biologically-based benchmark concentrations are available to help contextualize chemical monitoring results.
Asunto(s)
Rutas de Resultados Adversos , Monitoreo del Ambiente/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Contaminantes Químicos del Agua/análisis , Great Lakes Region , Ríos , Calidad del AguaRESUMEN
Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010-13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes. Samples were collected during runoff and low-flow conditions and analyzed for 69 OWCs, including herbicides, insecticides, polycyclic aromatic hydrocarbons, plasticizers, antioxidants, detergent metabolites, fire retardants, non-prescription human drugs, flavors/fragrances, and dyes. Urban-related land cover characteristics were the most important explanatory variables of concentrations of many OWCs. Compared to samples from nonurban watersheds (<15% urban land cover) samples from urban watersheds (>15% urban land cover) had nearly four times the number of detected compounds and four times the total sample concentration, on average. Concentration differences between runoff and low-flow conditions were not observed, but seasonal differences were observed in atrazine, metolachlor, DEET, and HHCB concentrations. Water quality benchmarks for individual OWCs were exceeded at 20 sites, and at 7 sites benchmarks were exceeded by a factor of 10 or more. The compounds with the most frequent water quality benchmark exceedances were the PAHs benzo[a]pyrene, pyrene, fluoranthene, and anthracene, the detergent metabolite 4-nonylphenol, and the herbicide atrazine. Computed estradiol equivalency quotients (EEQs) using only nonsteroidal endocrine-active compounds indicated medium to high risk of estrogenic effects (intersex or vitellogenin induction) at 10 sites. EEQs at 3 sites were comparable to values reported in effluent. This multifaceted study is the largest, most comprehensive assessment of the occurrence and potential effects of OWCs in the Great Lakes Basin to date.
Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Great Lakes Region , Lagos , Compuestos Orgánicos/toxicidad , Fenoles/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.