Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338670

RESUMEN

In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.


Asunto(s)
ADN Polimerasa I , Deinococcus , ADN Polimerasa I/genética , Deinococcus/genética , Temperatura , ADN Polimerasa Dirigida por ADN/genética , Técnicas de Amplificación de Ácido Nucleico , Replicación del ADN
2.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269725

RESUMEN

Generation of the 3' overhang is a critical step during homologous recombination (HR) and replication fork rescue processes. This event is usually performed by a series of DNA nucleases and/or helicases. The nuclease NurA and the ATPase HerA, together with the highly conserved MRE11/RAD50 proteins, play an important role in generating 3' single-stranded DNA during archaeal HR. Little is known, however, about HerA-NurA function and activation of this fundamental and complicated DNA repair process. Herein, we analyze the functional relationship among NurA, HerA and the single-strand binding protein SSB from Saccharolubus solfataricus. We demonstrate that SSB clearly inhibits NurA endonuclease activity and its exonuclease activities also when in combination with HerA. Moreover, we show that SSB binding to DNA is greatly stimulated by the presence of either NurA or NurA/HerA. In addition, if on the one hand NurA binding is not influenced, on the other hand, HerA binding is reduced when SSB is present in the reaction. In accordance with what has been observed, we have shown that HerA helicase activity is not stimulated by SSB. These data suggest that, in archaea, the DNA end resection process is governed by the strictly combined action of NurA, HerA and SSB.


Asunto(s)
Proteínas Arqueales , Sulfolobus solfataricus , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , ADN de Cadena Simple/metabolismo , Sulfolobus solfataricus/metabolismo
3.
Biosens Bioelectron ; 205: 114101, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202984

RESUMEN

The scenery of molecular diagnostics for infectious diseases is rapidly evolving to respond to the COVID-19 epidemic. The sensitivity and specificity of diagnostics, along with speed and accuracy, are crucial requirements for effective analytical tools to address the disease spreading around the world. Emerging diagnostic devices combine the latest trends in isothermal amplification methods for nucleic acids with state-of-the-art biosensing systems, intending to bypass roadblocks encountered in the last 2 years of the pandemic. Isothermal nucleic acid amplification is a simple procedure that quickly and efficiently accumulates nucleic acid sequences at a constant temperature, without the need for sophisticated equipment. The integration of isothermal amplification into portable biosensing devices confers high sensitivity and improves screening at the point of need in low-resource settings. This review reports the latest trends reached in this field with the latest examples of isothermal amplification-powered biosensors for detecting SARS-CoV-2, with different configurations, as well as their intrinsic advantages and disadvantages.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral , SARS-CoV-2/genética , Sensibilidad y Especificidad
4.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948099

RESUMEN

All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.


Asunto(s)
Archaea , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Archaea , Inestabilidad Genómica , Archaea/genética , Archaea/metabolismo , ADN de Archaea/genética , ADN de Archaea/metabolismo , Humanos
5.
Extremophiles ; 22(4): 581-589, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29488113

RESUMEN

ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3' single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , Sulfolobus solfataricus/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , ADN Helicasas/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Recombinación Homóloga , Unión Proteica , Sulfolobus solfataricus/genética
6.
PLoS One ; 10(11): e0142345, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26560692

RESUMEN

The nuclease NurA and the ATPase HerA are present in all known thermophilic archaea and cooperate with the highly conserved MRE11/RAD50 proteins to facilitate efficient DNA double-strand break end processing during homologous recombinational repair. However, contradictory results have been reported on the exact activities and mutual dependence of these two enzymes. To understand the functional relationship between these two enzymes we deeply characterized Sulfolobus solfataricus NurA and HerA proteins. We found that NurA is endowed with exo- and endonuclease activities on various DNA substrates, including linear (single-stranded and double stranded) as well as circular molecules (single stranded and supercoiled double-stranded). All these activities are not strictly dependent on the presence of HerA, require divalent ions (preferably Mn2+), and are inhibited by the presence of ATP. The endo- and exonculease activities have distinct requirements: whereas the exonuclease activity on linear DNA fragments is stimulated by HerA and depends on the catalytic D58 residue, the endonuclease activity on circular double-stranded DNA is HerA-independent and is not affected by the D58A mutation. On the basis of our results we propose a mechanism of action of NurA/HerA complex during DNA end processing.


Asunto(s)
Proteínas Arqueales/genética , Reparación del ADN/fisiología , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Sulfolobus solfataricus/genética , Proteínas Arqueales/metabolismo , ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Modelos Moleculares , Sulfolobus solfataricus/metabolismo
7.
PLoS One ; 8(8): e72408, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977294

RESUMEN

The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2~7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2~7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejos Multiproteicos/metabolismo , ARN/biosíntesis , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Hidrólisis , Ratones , Unión Proteica , Subunidades de Proteína/metabolismo
8.
Biochem J ; 454(2): 333-43, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23750504

RESUMEN

The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Modelos Moleculares , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sistema Libre de Células , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Proteínas de Mantenimiento de Minicromosoma , Simulación del Acoplamiento Molecular , Peso Molecular , Conformación de Ácido Nucleico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
9.
Biochem J ; 408(1): 87-95, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17683280

RESUMEN

To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Sulfolobus solfataricus/enzimología , Adenosina Trifosfato/metabolismo , Catálisis , ADN Helicasas/clasificación , Dimerización , Hidrólisis , Unión Proteica , Especificidad por Sustrato
10.
J Biol Chem ; 282(17): 12574-82, 2007 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-17337732

RESUMEN

Mini-chromosome maintenance (MCM) proteins form ring-like hexameric complexes that are commonly believed to act as the replicative DNA helicase at the eukaryotic/archaeal DNA replication fork. Because of their simplified composition with respect to the eukaryotic counterparts, the archaeal MCM complexes represent a good model system to use in analyzing the structural/functional relationships of these important replication factors. In this study the domain organization of the MCM-like protein from Sulfolobus solfataricus (Sso MCM) has been dissected by trypsin partial proteolysis. Three truncated derivatives of Sso MCM corresponding to protease-resistant domains were produced as soluble recombinant proteins and purified: the N-terminal domain (N-ter, residues 1-268); a fragment comprising the AAA+ and C-terminal domains (AAA+-C-ter, residues 269-686); and the C-terminal domain (C-ter, residues 504-686). All of the purified recombinant proteins behaved as monomers in solution as determined by analytical gel filtration chromatography, suggesting that the polypeptide chain integrity is required for stable oligomerization of Sso MCM. However, the AAA+-C-ter derivative, which includes the AAA+ motor domain and retains ATPase activity, was able to form dimers in solution when ATP was present, as analyzed by size exclusion chromatography and glycerol gradient sedimentation analyses. Interestingly, the AAA+-C-ter protein could displace oligonucleotides annealed to M13 single-stranded DNA although with a reduced efficiency in comparison with the full-sized Sso MCM. The implications of these findings for understanding the DNA helicase mechanism of the MCM complex are discussed.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad , Sulfolobus solfataricus/genética
11.
Extremophiles ; 11(2): 277-82, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17082970

RESUMEN

The hyper-thermophilic archaeon Sulfolobus solfataricus possesses two functional DNA polymerases belonging to the B-family (Sso DNA pol B1) and to the Y-family (Sso DNA pol Y1). Sso DNA pol B1 recognizes the presence of uracil and hypoxanthine in the template strand and stalls synthesis 3-4 bases upstream of this lesion ("read-ahead" function). On the other hand, Sso DNA pol Y1 is able to synthesize across these and other lesions on the template strand. Herein we report evidence that Sso DNA pol B1 physically interacts with DNA pol Y1 by surface plasmon resonance measurements and immuno-precipitation experiments. The region of DNA pol B1 responsible for this interaction has been mapped in the central portion of the polypeptide chain (from the amino acid residue 482 to 617), which includes an extended protease hyper-sensitive linker between the N- and C-terminal modules (amino acid residues Asn482-Ala497) and the alpha-helices forming the "fingers" sub-domain (alpha-helices R, R' and S). These results have important implications for understanding the polymerase-switching mechanism on the damaged template strand during genome replication in S. solfataricus.


Asunto(s)
Proteínas Arqueales/metabolismo , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma Arqueal/fisiología , Sulfolobus solfataricus/enzimología , Proteínas Arqueales/química , Daño del ADN , ADN Polimerasa Dirigida por ADN/química , Unión Proteica , Estructura Secundaria de Proteína , Resonancia por Plasmón de Superficie
12.
EMBO Rep ; 8(1): 99-103, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17170760

RESUMEN

The eukaryotic GINS complex has an essential role in the initiation and elongation phases of genome duplication. It is composed of four paralogous subunits--Sld5, Psf1, Psf2 and Psf3--which are ubiquitous and evolutionarily conserved in eukaryotic organisms. Here, we report the biochemical characterization of the human GINS complex (hGINS). The four hGINS subunits were coexpressed in Escherichia coli in a highly soluble form and purified as a complex. hGINS was shown to interact directly with the heterodimeric human DNA primase, by using either surface plasmon resonance measurements or by immunoprecipitation experiments carried out with anti-hGINS antibodies. The DNA polymerase alpha-primase synthetic activity was specifically stimulated by hGINS on various primed DNA templates. The significance of these findings is discussed in view of the molecular dynamics at the human replication fork.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , ADN/química , Replicación del ADN , Escherichia coli/genética , Humanos , Fragmentos de Péptidos/genética , Precursores de Proteínas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Resonancia por Plasmón de Superficie
13.
Nucleic Acids Res ; 32(17): 5223-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15459292

RESUMEN

DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 A and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-transferase activity, being able to incorporate nucleotides at the 3' end of synthetic oligonucleotides in a non-templated manner.


Asunto(s)
ADN Primasa/metabolismo , Nucleotidiltransferasas/metabolismo , Poli T/química , Sulfolobus/enzimología , Adenosina Trifosfato/metabolismo , ADN/química , ADN Primasa/aislamiento & purificación , Activación Enzimática , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Oligorribonucleótidos/biosíntesis , Oligorribonucleótidos/química , Poli T/metabolismo , ARN/biosíntesis , Especificidad por Sustrato , Moldes Genéticos
14.
J Biol Chem ; 279(41): 43008-12, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15292191

RESUMEN

The archaeal replication apparatus appears to be a simplified version of the eukaryotic one with fewer polypeptides and simpler protein complexes. Herein, we report evidence that a Cdc6-like factor from the hyperthermophilic crenarchaea Sulfolobus solfataricus stimulates binding of the homohexameric MCM-like complex to bubble- and fork-containing DNA oligonucleotides that mimic early replication intermediates. This function does not require the Cdc6 ATP and DNA binding activities. These findings may provide important clues to understanding how the DNA replication initiation process has evolved in the more complex eukaryotic organisms.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/química , Proteínas de Saccharomyces cerevisiae/química , Sulfolobus/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Proteínas de Ciclo Celular/fisiología , Cromosomas de Archaea , Replicación del ADN , ADN de Archaea/química , ADN de Archaea/metabolismo , Proteínas de Unión al ADN/fisiología , Relación Dosis-Respuesta a Droga , Inmunoprecipitación , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Oligonucleótidos/química , Unión Proteica , Proteínas de Saccharomyces cerevisiae/fisiología
15.
Biochem J ; 381(Pt 3): 645-53, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15104537

RESUMEN

In the present paper, we report that a Cdc6 (cell-division control)-like factor from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (referred to as SsoCdc6-2) has a modular organization of its biological functions. A reliable model of the SsoCdc6-2 three-dimensional structure was built up, based on the significant sequence identity with the Pyrobaculum aerophylum Cdc6 (PaeCdc6), whose crystallographic structure is known. This allowed us to design two truncated forms of SsoCdc6-2: the DeltaC (residues 1-297, molecular mass 35 kDa) and the DeltaN (residues 298-400, molecular mass 11 kDa) proteins. The DeltaC protein contains the nucleotide-binding Rossmann fold and the Sensor-2 motif (Domains I and II in the PaeCdc6 structure), and retains the ability to bind and hydrolyse ATP. On the other hand, the DeltaN protein contains the C-terminal WH (winged helix)-fold (Domain III), and is able to bind DNA molecules and to inhibit the DNA helicase activity of the SsoMCM (mini-chromosome maintenance) complex, although with lesser efficiency with respect to the full-sized SsoCdc6-2. These results provide direct biochemical evidence that the Cdc6 WH-domain is responsible for DNA-binding and inhibition of MCM DNA helicase activity.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Sulfolobus/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/farmacología , Empalme Alternativo/genética , Secuencia de Aminoácidos , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/genética , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/metabolismo , Cromosomas de Archaea/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Sulfolobus/enzimología
16.
J Biol Chem ; 278(47): 46424-31, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-12966100

RESUMEN

Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae , Sulfolobus/química , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación Missense , Fosforilación , Homología de Secuencia
17.
J Biol Chem ; 277(14): 12118-27, 2002 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11821426

RESUMEN

Mini-chromosome Maintenance (MCM) proteins play an essential role in both initiation and elongation phases of DNA replication in Eukarya. Genes encoding MCM homologs are present also in the genomic sequence of Archaea and the MCM-like protein from the euryarchaeon Methanobacterium thermoautotrophicum (Mth MCM) was shown to possess a robust ATP-dependent 3'-5' DNA helicase activity in vitro. Herein, we report the first biochemical characterization of a MCM homolog from a crenarchaeon, the thermoacidophile Sulfolobus solfataricus (Sso MCM). Gel filtration and glycerol gradient centrifugation experiments indicate that the Sso MCM forms single hexamers (470 kDa) in solution, whereas the Mth MCM assembles into double hexamers. The Sso MCM has NTPase and DNA helicase activity, which preferentially acts on DNA duplexes containing a 5'-tail and is stimulated by the single-stranded DNA binding protein from S. solfataricus (Sso SSB). In support of this functional interaction, we demonstrated by immunological methods that the Sso MCM and SSB form protein.protein complexes. These findings provide the first in vitro biochemical evidence of a physical/functional interaction between a MCM complex and another replication factor and suggest that the two proteins may function together in vivo in important DNA metabolic pathways.


Asunto(s)
Cromosomas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Sulfolobus/metabolismo , Adenosina Trifosfatasas/metabolismo , Western Blotting , Centrifugación , Cromatografía en Gel , Cromatografía en Capa Delgada , ADN Helicasas/química , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Humanos , Nucleótidos/química , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...