Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 272: 106966, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38815345

RESUMEN

The accumulation of plastics waste in the environment has raised a worrisome concern, moving the society to seek out for sustainable solutions, such as the transition from the use of fossil-based, conventional plastics to bioplastics (BPs). However, once in the environment bioplastics have the same probability to accumulate and experience weathering processes than conventional plastics, leading to the formation of microplastics (MPs). However, to date the information on the potential toxicity of MPs originated from the weathering of bioplastics is limited. Thus, this study aimed at investigating the adverse effects induced by the exposure to MPs made of a bioplastic polymer, the polylactic acid (PLA), towards the freshwater cladoceran Daphnia magna. Organisms were exposed for 21 days to three concentrations (0.125 µg/mL, 1.25 µg/mL and 12.5 µg/mL) of PLA microplastics (hereafter PLA-MPs). A multi-level approach was performed to investigate the potential effects through the biological hierarchy, starting from the sub-individual up to the individual level. At the sub-individual level, changes in the oxidative status (i.e., the amount of reactive oxygen species and the activity of antioxidant and detoxifying enzymes) and oxidative damage (i.e., lipid peroxidation) were explored. Moreover, the total caloric content as well as the content of protein, carbohydrate and lipid content assess were used to investigate the effects on energy reserves. At individual level the changes in swimming activity (i.e., distance moved and swimming speed) were assessed. Our results showed that the exposure to PLA-MPs induced a slight modulation in the oxidative status and energy reserves, leading to an increase in swimming behavior of treated individuals compared to control conspecifics. These results suggest that the exposure to MPs made of a bioplastic polymer can induce adverse effects similar to those caused by conventional polymers.

2.
Environ Sci Pollut Res Int ; 31(24): 35864-35877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743335

RESUMEN

Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Microplásticos , Contaminantes Químicos del Agua , Lagos/química , Italia , Sedimentos Geológicos/química , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Altitud
3.
Toxics ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668523

RESUMEN

The implementation of recycling techniques represents a potential solution to the plastic pollution issue. To date, only a limited number of plastic polymers can be efficiently recycled. In the Italian plastic waste stream, the residual, non-homogeneous fraction is called 'Plasmix' and is intended for low-value uses. However, Plasmix can be used to create new materials through mechanical recycling, which need to be tested for their eco-safety. This study aimed to investigate the potential toxicity of two amounts (0.1% and 1% MPs in soil weight) of microplastics (MPs) made of naïve and additivated Plasmix-based materials (Px and APx, respectively) on the earthworm Eisenia foetida. Changes in oxidative status and oxidative damage, survival, gross growth rate and reproductive output were considered as endpoints. Although earthworms ingested both MP types, earthworms did not suffer an oxidative stress condition or growth and reproductive impairments. The results suggested that exposure to low amounts of both MPs can be considered as safe for earthworms. However, further studies testing a higher amount or longer exposure time on different model species are necessary to complete the environmental risk assessment of these new materials.

4.
Environ Pollut ; 348: 123868, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556148

RESUMEN

A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.


Asunto(s)
Microplásticos , Oligoquetos , Poliésteres , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Tereftalatos Polietilenos , Ecosistema , Antioxidantes/farmacología , Suelo , Polietileno/farmacología
5.
Toxins (Basel) ; 16(1)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38251264

RESUMEN

Zootoxins are produced by venomous and poisonous species and are an important cause of poisoning in companion animals and livestock in Europe. Little information about the incidence of zootoxin poisoning is available in Europe, with only a few case reports and review papers being published. This review presents the most important zootoxins produced by European venomous and poisonous animal species responsible for poisoning episodes in companion animals and livestock. The main zootoxin-producing animal species, components of the toxins/venoms and their clinical effects are presented. The most common zootoxicoses involve terrestrial zootoxins excreted by the common toad, the fire salamander, the pine processionary caterpillar, and vipers. The lack of a centralized reporting/poison control system in Europe makes the evaluation of the epidemiology of zootoxin-induced poisonings extremely difficult. Even if there are many anecdotal reports in the veterinary community about the exposure of domestic animals to terrestrial and marine zootoxins, the number of published papers regarding these toxicoses is low. Climate change and its consequences regarding species distribution and human-mediated transportation are responsible for the emerging nature of some intoxications in which zootoxins are involved. Although new venomous or poisonous animal species have emerged in regions where they were previously unreported, zootoxins produced by native species remain the main concern in Europe. The diversity of poisonous and venomous animal species and the emerging nature of certain poisonings warrant the continuous update to such knowledge by veterinary professionals and animal owners. This review offers an overview about zootoxin-related poisonings in domestic animals in Europe and also provides important information from a health perspective.


Asunto(s)
Animales Domésticos , Cambio Climático , Animales , Humanos , Europa (Continente)/epidemiología , Ganado
6.
Mar Pollut Bull ; 200: 116061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290366

RESUMEN

Nanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.5 and 5 µg/mL) on the brittles star Ophiactis virens. Diverse endpoints at different levels of biological organization were considered, including behavior, arm regeneration capacity and oxidative stress. PS-NPs were observed on the brittle star body surface but not in inner tissues. Accumulation of PS-NPs was observed in the pre-buccal cavity of animals exposed to 5 µg/mL PS-NPs which also displayed delayed righting activity and an oxidative stress condition. Nevertheless, no effect was observed on arm regeneration efficiency at any tested PS-NPs concentration. Overall, our results highlighted that prolonged exposure to high amounts of PS-NPs could interfere at least partially with the physiology of O. virens.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad
7.
Toxins (Basel) ; 15(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37368684

RESUMEN

Although over the last 10 years several studies have focused on the emerging mycotoxins known as enniatins (ENNs), there is still a lack of knowledge regarding their toxicological effects and the development of a correct risk assessment. This is especially true for enniatin B1 (ENN B1), considered the younger sister of the widely studied enniatin B (ENN B). ENN B1 has been found in several food commodities and, as with other mycotoxins, presents antibacterial and antifungal properties. On the other hand, ENN B1 has shown cytotoxic activity, impairment of the cell cycle, the induction of oxidative stress, and changes in mitochondrial membrane permeabilization, as well as negative genotoxic and estrogenic effects. Overall, considering the paucity of information available regarding ENN B1, further studies are necessary to perform a risk assessment. This review summarizes information on the biological characteristics and toxicological effects of ENN B1 as well as the future challenges that this mycotoxin could present.


Asunto(s)
Depsipéptidos , Micotoxinas , Micotoxinas/metabolismo , Depsipéptidos/metabolismo , Estrés Oxidativo , Ciclo Celular
8.
Environ Toxicol Pharmacol ; 100: 104163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37257268

RESUMEN

Among amphetamine like stimulants (ATS), the 3,4-methylenedioxymethamphetamine (MDMA) is often detected in sewage and surface waters, representing a potential threat for organisms because of its peculiar mechanism of action (i.e., stimulatory and hallucinogenic). The present study aimed at investigating biochemical (i.e., oxidative stress and energetic biomarkers) and behavioral (i.e., swimming activity) effects induced by a 21-days exposure to two concentrations (50 ng/L and 500 ng/L) of MDMA towards Daphnia magna. The amount of reactive oxygen species (ROS), the activity of antioxidant (SOD, CAT, GPx) and detoxifying (GST) enzymes and lipid peroxidation were measured as oxidative stress-related endpoints. Total energy content was estimated from the measurement of protein, carbohydrate and lipid content to assess energy reserves. The modulation of swimming activity was assessed as behavioral endpoint. Slight effects of MDMA exposure on oxidative stress responses and energy reserves were observed, while no alterations of the swimming behavior was noted.


Asunto(s)
Daphnia , N-Metil-3,4-metilenodioxianfetamina , Contaminantes Químicos del Agua , Animales , Antioxidantes/farmacología , Daphnia/fisiología , N-Metil-3,4-metilenodioxianfetamina/toxicidad , N-Metil-3,4-metilenodioxianfetamina/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-36901131

RESUMEN

A growing number of studies have confirmed that microplastics (MPs) contamination represents a worrisome issue of global concern. MPs have been detected in the atmosphere, in aquatic and terrestrial ecosystems, as well as in the biota. Moreover, MPs have been recently detected in some food products and in drinking water. However, only limited information is currently available for beverages, although they are largely consumed by humans and might contribute to the ingestion of MPs. Thus, estimating the contamination in beverages represents a crucial step in assessing human MP ingestion. The aim of the present study was to explore the presence of MPs in nonalcoholic beverages, namely soft drinks and cold tea, of different brands purchased in supermarkets and to estimate the contribution of beverage consumption to MP ingestion by humans. The results of the present study confirmed the presence of MPs, mainly fibers, in most of the analyzed beverages, with a mean (± SEM) number of 9.19 ± 1.84 MPs/L. In detail, the number of MPs detected in soft drinks and cold tea was 9.94 ± 0.33 MPs/L and 7.11 ± 2.62 MPs/L, respectively. Our findings confirmed that beverage consumption can be considered one of the main pathways for MP ingestion by humans.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Ecosistema , Bebidas , , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
10.
Sci Total Environ ; 860: 160497, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436639

RESUMEN

A growing number of studies has shown that the exposure to microplastics (MPs) of different polymeric compositions can induce diverse adverse effects towards several aquatic species. The vast majority of such studies has been focused on the effects induced by the administration of MPs made by polystyrene (PS; hereafter PS-MPs). However, despite the increase in the knowledge on the potential toxicity of PS-MPs, there is a dearth of information concerning their role in affecting energy resources and/or their allocation. The present study aimed at exploring the impact of 21-days exposure to three concentrations (0.125, 1.25 and 12.5 µg mL-1) of PS-MPs of different sizes (1 and 10 µm) on fatty acids (FAs) profile of the freshwater Cladoceran Daphnia magna. The exposure to the highest tested concentration of PS-MPs induced an overall decrease in D. magna total FAs content, independently of the particle size. Moreover, a change in the accumulation of essential FAs by the diet was noted, with an enhanced synthesis of monounsaturated FAs-rich storage lipids. However, a sort of adaptation to counteract the adverse effects and to re-establish the FAs homeostasis was observed in individuals treated with high PS-MPs concentration, independently of their size. These results indicate that the exposure to PS-MPs could alter the allocation or induce changes in FAs composition in D. magna, with potential long-term consequences on life-history traits of this zooplanktonic species.


Asunto(s)
Poliestirenos , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos/toxicidad , Plásticos/toxicidad , Daphnia , Ácidos Grasos , Contaminantes Químicos del Agua/análisis
11.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500953

RESUMEN

The present work aimed at decorating halloysite nanotubes (HNT) with magnetic Fe3O4 nanoparticles through different synthetic routes (co-precipitation, hydrothermal, and sol-gel) to test the efficiency of three magnetic composites (HNT/Fe3O4) to remove the antibiotic ofloxacin (OFL) from waters. The chemical-physical features of the obtained materials were characterized through the application of diverse techniques (XRPD, FT-IR spectroscopy, SEM, EDS, and TEM microscopy, thermogravimetric analysis, and magnetization measurements), while ecotoxicity was assessed through a standard test on the freshwater organism Daphnia magna. Independently of the synthesis procedure, the magnetic composites were successfully obtained. The Fe3O4 is nanometric (about 10 nm) and the weight percentage is sample-dependent. It decorates the HNT's surface and also forms aggregates linking the nanotubes in Fe3O4-rich samples. Thermodynamic and kinetic experiments showed different adsorption capacities of OFL, ranging from 23 to 45 mg g-1. The kinetic process occurred within a few minutes, independently of the composite. The capability of the three HNT/Fe3O4 in removing the OFL was confirmed under realistic conditions, when OFL was added to tap, river, and effluent waters at µg L-1 concentration. No acute toxicity of the composites was observed on freshwater organisms. Despite the good results obtained for all the composites, the sample by co-precipitation is the most performant as it: (i) is easily magnetically separated from the media after the use; (ii) does not undergo any degradation after three adsorption cycles; (iii) is synthetized through a low-cost procedure. These features make this material an excellent candidate for removal of OFL from water.

12.
Sci Total Environ ; 851(Pt 2): 158301, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030849

RESUMEN

Microplastic (MP) contamination is ubiquitous and widespread in terrestrial and aquatic ecosystems, including remote areas. However, information on the presence and distribution of MPs in high-mountain ecosystems, including glaciers, is still limited. The present study aimed at investigating presence, spatial distribution, and patterns of contamination of MPs on three glaciers of the Ortles-Cevedale massif (Central Alps, Northern Italy) with different anthropic pressures, i.e., the Forni, Cedec and Ebenferner-Vedretta Piana glaciers. Samples of supraglacial debris were randomly collected from the glaciers and MPs were isolated. The mean amount (±SE) of MPs measured in debris from Forni, Cedec and Ebenferner-Vedretta Piana glaciers was 0.033 ± 0.007, 0.025 ± 0.009, and 0.265 ± 0.027 MPs g-1 dry weight, respectively. The level and pattern of MP contamination from the Ebenferner-Vedretta Piana glacier were significantly different from those of the other glaciers. No significant spatial gradient in MP distribution along the ablation areas of the glaciers was observed, suggesting that MPs do not accumulate toward the glacier snout. Our results confirmed that local contamination can represent a relevant source of MPs in glacier ecosystems experiencing high anthropic pressure, while long-range transport can be the main source on other glaciers.


Asunto(s)
Cubierta de Hielo , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , Italia , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
13.
Mar Pollut Bull ; 182: 114030, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964431

RESUMEN

Microplastics are increasingly pervasive pollutants, particularly abundant in the neuston where they drift with currents. We assessed dietary microplastic ingestion in the Mediterranean storm petrel (Hydrobates pelagicus melitensis), a small pelagic seabird that forages on plankton and inhabit the Mediterranean sea, one of the most polluted seas worldwide. We collected spontaneous regurgitates from 30 chick-rearing individuals and used GPS tracking data from 7 additional individuals to locate foraging areas. Birds foraged in pelagic areas characterized by water stirring and mixing, and regurgitates from 14 individuals (i.e. 45 %) contained microplastics. Fibers were the dominant shape (56 %), with polyester, polyethylene and nylon being the most frequent polymers. Our findings highlight the potential sensitivity of this species of conservation interest to plastic pollution and suggest that storm petrel regurgitates can be a valuable matrix to investigate microplastic ingestion in planktonic foragers, providing a characterization of spatio-temporal patterns of microplastic exposure in pelagic environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Aves , Ingestión de Alimentos , Monitoreo del Ambiente , Humanos , Mar Mediterráneo , Plancton , Plásticos , Contaminantes Químicos del Agua/análisis
14.
Artículo en Inglés | MEDLINE | ID: mdl-36011719

RESUMEN

The environmental accumulation of plastic wastes has become one of the most discussed topics in the scientific community. The development of new strategies to tackle this issue is of crucial importance, and different approaches are being investigated to effectively reduce plastic waste generated by improper or inefficient disposal. In addition to the efforts addressing the development of biodegradable plastics, the research is currently focused on the development of innovative recycling approaches. Indeed, although most plastic materials are potentially recyclable, only 15% of the worldwide plastic waste is currently recycled, while the remaining 85% is usually incinerated to recover thermal energy or landfilled. The hurdles to efficient recycling come from improper management of end-of-life plastic goods. Moreover, the highly heterogeneous nature and versatility of plastic and polymeric materials have led to the development of multilayered materials, composites, blends and many other different species, whose management and/or reprocessing to yield high-value products is extremely challenging. Thus, although these materials are extremely valuable from an industrial point of view, they add a high degree of complexity to the recycling process because each one of them is different from the other, but they cannot be separated efficiently. The aim of the present review is to return a comprehensive overview of environmental and management issues related to the complex and heterogeneous mixture of plastic waste that is generated at the end of the sorting procedures in Italian plastic recycling plants, the so-called 'Plasmix'. This review lists the difficulties and limitations related to the management of non-recyclable Plasmix and highlights the strategies for the proper, sustainable and valuable use of this plastic waste.


Asunto(s)
Plásticos , Administración de Residuos , Industrias , Polímeros , Reciclaje , Administración de Residuos/métodos
15.
Sci Total Environ ; 844: 157025, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35777565

RESUMEN

Cocaine (COC) and its main metabolite, the benzoylecgonine (BE), are the main illicit drugs measured in aquatic system worldwide, with concentrations up to hundreds of ng/L. Although their current environmental concentrations are low these molecules can induce adverse effects at sub-individual level in non-target organisms. In contrast, the information at individual and behavioral level are still scant. The present study aimed at investigating biochemical and behavioral effects induced by 14-days exposure to environmentally relevant concentrations (50 ng/L and 500 ng/L) of COC and BE towards Procambarus clarkii. At sub-individual level, the activity of antioxidant and detoxifying (superoxide dismutase - SOD, catalase - CAT, glutathione peroxidase - GPx and glutathione S-transferases - GST) enzymes, as well as the levels of lipid peroxidation (LPO), were measured as oxidative stress-related endpoints. We also measured the acetylcholinesterase (AChE) activity to check for neurotoxic effect of COC and BE. At individual level, the modulation of some behavioral tasks (i.e., response to external stimuli, changes in feeding activity and exploration of a new environment) were assessed. Although both COC and BE exposure did not induce an oxidative stress situation, a significant inhibition of AChE activity was noted, resulting in behavioral changes in crayfish exposed to COC only. Crayfish exposed to the higher COC concentration showed an increase in the boldness and a decrease in the feeding activity, suggesting that COC may act according to its psychotropic mode of action.


Asunto(s)
Cocaína , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Astacoidea/metabolismo , Cocaína/análogos & derivados , Cocaína/toxicidad , Estrés Oxidativo , Contaminantes Químicos del Agua/metabolismo
16.
Environ Int ; 164: 107264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35489111

RESUMEN

The presence and potential toxicity of nanoplastics (NPs) in aquatic ecosystems is an issue of growing concern. Although many studies have investigated the adverse effects of short-term exposure to high concentrations of NPs to aquatic organisms, the information on the consequences caused by the administration of low NPs concentrations over long-term exposure is limited. The present study aimed at investigating the effects induced by a long-term exposure (21-days) to two sub-lethal concentrations of polystyrene nanoplastics (PS-NPs; 0.05 and 0.5 µg/mL) on Daphnia magna. A multi-level approach was performed to assess potential sub-individual (i.e., molecular and biochemical) and individual (i.e., behavioural) adverse effects. At molecular level, the modulation of the expression of genes involved in antioxidant defence, response to stressful conditions and specific physiological pathways was investigated. Oxidative stress (i.e., the amount of pro-oxidants, the activity of antioxidant and detoxifying enzymes and lipid peroxidation) and energetic (i.e., protein, carbohydrate, lipid and total caloric content) biomarkers were applied to assess effects at the biochemical level, while swimming activity was measured to monitor changes in individual behavior. Although the 21-days exposure to PS-NPs induced a slight modulation of gene involved in oxidative stress response, biochemical analyses showed that D. magna individuals did not experience an oxidative stress condition. Significant changes in energy reserves of individuals exposed for 21 days to both the PS-NPs concentrations were observed, but no alterations of swimming activity occurred. Our results highlighted that the exposure to low concentrations of PS-NPs could pose a limited risk to D. magna individuals and suggested the importance of a multi-level approach to assess the risks of NPs on aquatic organisms.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Daphnia/metabolismo , Ecosistema , Microplásticos/toxicidad , Poliestirenos/análisis , Poliestirenos/química , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis
17.
Environ Monit Assess ; 194(3): 208, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194687

RESUMEN

The monitoring of contaminants represents a priority to preserve the integrity of marine ecosystems, as well as to plan and to manage restoration activities in order to protect environmental and human health. In the present study, a 6-months active biomonitoring was performed to explore the levels of eighteen trace and toxic elements, including heavy metals (TEs; i.e. Al, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, and Zn), accumulated in soft tissues of blue mussel (Mytilus edulis Linnaeus, 1758) individuals transplanted at different depths (5- and 15-m depth) in five locations within the Flekkefjord fjord (Southern Norway). As this area suffered a long-lasting contamination due to both organic and inorganic contaminants, a series of restoration activities were activated to tackle and to prevent potential risks for ecosystem and local population. Our results demonstrated that the levels of TEs accumulated in edible tissues of transplanted mussels in the Flekkefjord fjord were generally low before the beginning of the restoration activities. However, location- and time-specific differences in the accumulation of TEs were noted after the implementation of such activities. Interestingly, the levels of Fe and Mn significantly increased after the beginning of the restoration activities, likely because the release of these TEs from the slag used in such operations and/or resuspension of contaminated sediments. However, assuming that native mussels can accumulate the same TEs at levels measured in transplanted individuals, our results suggest a substantial safety for human consumption of native mussels from the Flekkefjord fjord, regardless of restoration activities.


Asunto(s)
Metales Pesados , Mytilus edulis , Oligoelementos , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente/métodos , Estuarios , Humanos , Metales Pesados/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 806(Pt 1): 150495, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844332

RESUMEN

From the onset of Covid-19 pandemic, the use of face masks has been adapted as one of the main measures to slow down the transmission of the SARS-CoV-2 virus worldwide. The inadequate handling and management of face masks lead to a massive dispersal in the environment, resulting in a new source of microfibers because of their breakdown and/or degradation. In addition, the laundering of reusable face masks of different polymeric composition can represent an additional sources of microfibers to natural ecosystems, but it was largely neglected. The present study explored the release of synthetic or natural microfibers from reusable and disposable face masks of five different fabrics when subjected to a cycle of laundering in a domestic washing machine. After a single wash, face masks released an average (± SE) of 284.94 ± 73.66 microfibers, independently of the fabrics. Focusing on the fabrics composing the face masks, polyurethane (541.33 ± 51.84 microfibers) and cotton-based (823.00 ± 112.53 microfibers) face masks released the highest amount of synthetic and natural microfibers, respectively. Considering the crucial role of face masks to counteract the pandemic and the increasing trend of their use, further studies represent a priority to estimate the contribution of face mask-derived microfibers to freshwater contamination.


Asunto(s)
COVID-19 , Lavandería , Ecosistema , Humanos , Máscaras , Pandemias , SARS-CoV-2
19.
J Exp Biol ; 224(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34622274

RESUMEN

Maternally derived hormones induce variation in offspring phenotype, with consequences that can carry over into post-natal life and even into adulthood. In birds, maternal egg corticosterone (CORT) is known to exert contrasting effects on offspring morphology, physiology and behaviour after hatching. However, information on the effects of CORT exposure on pre-hatching embryonic development is limited. We experimentally increased yolk CORT levels in yellow-legged gull (Larus michahellis) eggs, and assessed the effects on embryo pre-hatching development and oxidative status of brain and liver. CORT-supplemented embryos reached a larger skeletal size and liver mass compared with controls. Embryos from CORT-injected last-laid eggs showed decreased activity of the hepatic antioxidant enzymes superoxide dismutase and catalase, while intermediate-laid eggs showed increased levels of lipid peroxidation. However, elevated yolk CORT did not affect oxidative stress endpoints in the brain. Our results indicate that elevated yolk CORT levels affect prenatal embryo development by promoting skeletal growth, and induce laying sequence- and organ-specific oxidative imbalance, with potential adverse consequences during postnatal life, especially for late-hatched offspring.


Asunto(s)
Charadriiformes , Animales , Antioxidantes/metabolismo , Charadriiformes/metabolismo , Corticosterona/metabolismo , Corticosterona/toxicidad , Yema de Huevo/metabolismo , Estrés Oxidativo
20.
Environ Toxicol Pharmacol ; 87: 103718, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34329803

RESUMEN

Exposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis). Prenatal TCS exposure caused a significant overproduction of reactive oxygen species (ROS) in the brain, but no oxidative damage occurred. Telomeres of TCS-exposed embryos had brain telomeres 30 % shorter compared to controls, probably because the relatively modest antioxidant defenses of this organ during prenatal development cannot counteract the impact of the TCS-induced ROS. No telomere shortening was observed in the liver. Our results demonstrated that prenatal exposure to TCS in wild bird species can modulate the oxidative status and induce telomere shortening in the brain of the yellow-legged gull embryos.


Asunto(s)
Antiinfecciosos/toxicidad , Encéfalo/efectos de los fármacos , Charadriiformes/embriología , Charadriiformes/genética , Acortamiento del Telómero/efectos de los fármacos , Triclosán/toxicidad , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Daño del ADN , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Femenino , Masculino , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA