Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 893: 147895, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37832807

RESUMEN

Many gene families are shared across the tree of life between distantly related species because of horizontal gene transfers (HGTs). However, the frequency of HGTs varies strongly between gene families and biotic realms suggesting differential selection pressures and functional bias. One gene family with a wide distribution are FIC-domain containing enzymes (FicDs). FicDs catalyze AMPylation, a post-translational protein modification consisting in the addition of adenosine monophosphate to accessible residues of target proteins. Beside the well-known conservation of FicDs in deuterostomes, we report the presence of a conserved FicD gene ortholog in a large number of protostomes and microbial eukaryotes. We also reported additional FicD gene copies in the genomes of some rotifers, parasitic worms and bivalves. A few dsDNA viruses of these invertebrates, including White spot syndrome virus, Cherax quadricarinatus iridovirus, Ostreid herpesvirus-1 and the beetle nudivirus, carry copies of FicDs, with phylogenetic analysis suggesting a common origin of these FicD copies and the duplicated FicDs of their invertebrate hosts. HGTs and gene duplications possibly mediated by endogenous viruses or genetic mobile elements seem to have contributed to the transfer of AMPylation ability from bacteria and eukaryotes to pathogenic viruses, where this pathway could have been hijacked to promote viral infection.


Asunto(s)
Invertebrados , Virosis , Animales , Filogenia , Invertebrados/genética , Procesamiento Proteico-Postraduccional , Bacterias
2.
Protein Sci ; 33(2): e4887, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38152025

RESUMEN

The pharmacokinetic properties of small biotherapeutics can be enhanced via conjugation to cross-reactive albumin-binding ligands in a process that improves their safety and accelerates testing through multiple pre-clinical animal models. In this context, the small and stable heavy-chain-only nanobody NbAlb1, capable of binding both human and murine albumin, has recently been successfully applied to improve the stability and prolong the in vivo plasma residence time of multiple small therapeutic candidates. Despite its clinical efficacy, the mechanism of cross-reactivity of NbAlb1 between human and murine serum albumins has not yet been investigated. To unveil the molecular basis of such an interaction, we solved the crystal structure of human serum albumin (hSA) in complex with NbAlb1. The structure was obtained by harnessing the unique features of a megabody chimeric protein, comprising NbAlb1 grafted onto a modified version of the circularly permutated and bacterial-derived protein HopQ. This structure showed that NbAlb1 contacts a yet unexplored binding site located in the peripheral region of domain II that is conserved in both human and mouse serum albumin proteins. Furthermore, we show that the binding of NbAlb1 to both serum albumin proteins is retained even at acidic pH levels, thus explaining its extended in vivo half-life. The elucidation of the molecular basis of NbAlb1 cross-reactivity to human and murine albumins might guide the design of novel nanobodies with broader reactivity toward a larger panel of serum albumins, thus facilitating the pre-clinical and clinical phases in humans.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Ratones , Animales , Albúmina Sérica Humana/metabolismo , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Dominios Proteicos
3.
Chem Res Toxicol ; 35(11): 2049-2058, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36148994

RESUMEN

The current trend dealing with the production of per- and polyfluoroalkyl substances (PFASs) involves the shifting toward branched short-chain fluorinated compounds known as new-generation PFASs. A key aspect to be clarified, to address the adverse health effects associated with the exposure to PFASs, is their binding mode to human serum albumin (hSA), the most abundant protein in plasma. In this study, we investigated the interaction between hSA and two representative branched short-chain PFASs, namely, HPFO-DA and C6O4. In-solution studies revealed that both compounds bind hSA with affinities and stoichiometries lower than that of the legacy long-chain perfluoroalkyl compound PFOA. Competition experiments using hSA-binding drugs with known site-selectivity revealed that both HPFO-DA and C6O4 bound to pockets located in subdomain IIIA. The crystal structure of hSA in complex with HPFO-DA unveiled the presence of two binding sites. The characterization and direct comparison of hSA interactions with new-generation PFASs may be key elements for the understanding of the toxicological impact of these compounds.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Albúmina Sérica Humana , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA