Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cyst Fibros ; 20(6): 1062-1071, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33589340

RESUMEN

BACKGROUND: Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms. METHODS: Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls. Using microfluidic assays and advanced imaging technologies, we characterized 1) spontaneous neutrophil migration using microfluidic motility mazes, 2) neutrophil migration to and phagocytosis of Staphylococcal aureus particles in a microfluidic arena, 3) neutrophil swarming on Candida albicans clusters, and 4) Pseudomonas aeruginosa-induced neutrophil transepithelial migration using micro-optical coherence technology (µOCT). RESULTS: Participants included 44 individuals: 16 Outpatient CF, 13 Hospitalized CF, and 15 Non-CF individuals. While no differences were seen with spontaneous migration, CF neutrophils migrated towards S. aureus particles more quickly than non-CF neutrophils (p < 0.05). CF neutrophils, especially Hospitalized CF neutrophils, generated significantly larger aggregates around S. aureus particles over time. Hospitalized CF neutrophils were more likely to have dysfunctional swarming (p < 0.01) and less efficient clearing of C. albicans (p < 0.0001). When comparing trans-epithelial migration towards Pseudomonas aeruginosa epithelial infection, Outpatient CF neutrophils displayed an increase in the magnitude of transmigration and adherence to the epithelium (p < 0.05). CONCLUSIONS: Advanced technologies for characterizing CF neutrophil function reveal significantly altered migratory responses, cell-to-cell clustering, and microbe containment. Future investigations will probe mechanistic basis for abnormal responses in CF to identify potential avenues for novel anti-inflammatory therapeutics.


Asunto(s)
Fibrosis Quística/inmunología , Neutrófilos/inmunología , Adulto , Candida albicans/inmunología , Movimiento Celular , Femenino , Humanos , Inflamación/inmunología , Masculino , Técnicas Analíticas Microfluídicas , Fagocitosis , Pseudomonas aeruginosa/inmunología , Staphylococcus aureus/inmunología , Tomografía de Coherencia Óptica
4.
JAMA Netw Open ; 3(12): e2030455, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33351086

RESUMEN

Importance: Biological data are lacking with respect to risk of vertical transmission and mechanisms of fetoplacental protection in maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objective: To quantify SARS-CoV-2 viral load in maternal and neonatal biofluids, transplacental passage of anti-SARS-CoV-2 antibody, and incidence of fetoplacental infection. Design, Setting, and Participants: This cohort study was conducted among pregnant women presenting for care at 3 tertiary care centers in Boston, Massachusetts. Women with reverse transcription-polymerase chain reaction (RT-PCR) results positive for SARS-CoV-2 were recruited from April 2 to June 13, 2020, and follow-up occurred through July 10, 2020. Contemporaneous participants without SARS-CoV-2 infection were enrolled as a convenience sample from pregnant women with RT-PCR results negative for SARS-CoV-2. Exposures: SARS-CoV-2 infection in pregnancy, defined by nasopharyngeal swab RT-PCR. Main Outcomes and Measures: The main outcomes were SARS-CoV-2 viral load in maternal plasma or respiratory fluids and umbilical cord plasma, quantification of anti-SARS-CoV-2 antibodies in maternal and cord plasma, and presence of SARS-CoV-2 RNA in the placenta. Results: Among 127 pregnant women enrolled, 64 with RT-PCR results positive for SARS-CoV-2 (mean [SD] age, 31.6 [5.6] years) and 63 with RT-PCR results negative for SARS-CoV-2 (mean [SD] age, 33.9 [5.4] years) provided samples for analysis. Of women with SARS-CoV-2 infection, 23 (36%) were asymptomatic, 22 (34%) had mild disease, 7 (11%) had moderate disease, 10 (16%) had severe disease, and 2 (3%) had critical disease. In viral load analyses among 107 women, there was no detectable viremia in maternal or cord blood and no evidence of vertical transmission. Among 77 neonates tested in whom SARS-CoV-2 antibodies were quantified in cord blood, 1 had detectable immunoglobuilin M to nucleocapsid. Among 88 placentas tested, SARS-CoV-2 RNA was not detected in any. In antibody analyses among 37 women with SARS-CoV-2 infection, anti-receptor binding domain immunoglobin G was detected in 24 women (65%) and anti-nucleocapsid was detected in 26 women (70%). Mother-to-neonate transfer of anti-SARS-CoV-2 antibodies was significantly lower than transfer of anti-influenza hemagglutinin A antibodies (mean [SD] cord-to-maternal ratio: anti-receptor binding domain immunoglobin G, 0.72 [0.57]; anti-nucleocapsid, 0.74 [0.44]; anti-influenza, 1.44 [0.80]; P < .001). Nonoverlapping placental expression of SARS-CoV-2 receptors angiotensin-converting enzyme 2 and transmembrane serine protease 2 was noted. Conclusions and Relevance: In this cohort study, there was no evidence of placental infection or definitive vertical transmission of SARS-CoV-2. Transplacental transfer of anti-SARS-CoV-2 antibodies was inefficient. Lack of viremia and reduced coexpression and colocalization of placental angiotensin-converting enzyme 2 and transmembrane serine protease 2 may serve as protective mechanisms against vertical transmission.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Sangre Fetal/inmunología , Inmunidad Materno-Adquirida/inmunología , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Placenta/metabolismo , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/sangre , COVID-19/transmisión , Prueba Serológica para COVID-19 , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Sangre Fetal/virología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Recién Nacido , Virus de la Influenza A/inmunología , Masculino , Fosfoproteínas/inmunología , Placenta/patología , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/sangre , Estudios Prospectivos , ARN Viral/metabolismo , Receptores de Coronavirus/metabolismo , Serina Endopeptidasas/metabolismo , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
5.
BMC Med Res Methodol ; 20(1): 228, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917141

RESUMEN

BACKGROUND: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. METHODS: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. RESULTS: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. CONCLUSIONS: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Manejo de Especímenes/métodos , Adolescente , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Femenino , Desarrollo Fetal , Hospitalización , Humanos , Lactante , Recién Nacido , Masculino , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/transmisión , SARS-CoV-2
6.
Res Sq ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32818214

RESUMEN

Background: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. Methods: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. Results: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. Conclusions: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.

7.
J Pediatr ; 227: 45-52.e5, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32827525

RESUMEN

OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.


Asunto(s)
COVID-19 , Adolescente , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Prueba de COVID-19 , Niño , Preescolar , Comorbilidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Pandemias , Índice de Severidad de la Enfermedad , Carga Viral , Adulto Joven
8.
Infect Immun ; 88(2)2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31767773

RESUMEN

Aspergillus fumigatus is a ubiquitous fungal pathogen capable of causing multiple pulmonary diseases, including invasive aspergillosis, chronic necrotizing aspergillosis, fungal colonization, and allergic bronchopulmonary aspergillosis. Intact mucociliary barrier function and early airway neutrophil responses are critical for clearing fungal conidia from the host airways prior to establishing disease. Following inhalation, Aspergillus conidia deposit in the small airways, where they are likely to make their initial host encounter with epithelial cells. Challenges in airway infection models have limited the ability to explore early steps in the interactions between A. fumigatus and the human airway epithelium. Here, we use inverted air-liquid interface cultures to demonstrate that the human airway epithelium responds to apical stimulation by A. fumigatus to promote the transepithelial migration of neutrophils from the basolateral membrane surface to the apical airway surface. Promoting epithelial transmigration with Aspergillus required prolonged exposure with live resting conidia. Swollen conidia did not expedite epithelial transmigration. Using A. fumigatus strains containing deletions of genes for cell wall components, we identified that deletion of the hydrophobic rodlet layer or dihydroxynaphthalene-melanin in the conidial cell wall amplified the epithelial transmigration of neutrophils, using primary human airway epithelium. Ultimately, we show that an as-yet-unidentified nonsecreted cell wall protein is required to promote the early epithelial transmigration of human neutrophils into the airspace in response to A. fumigatus Together, these data provide critical insight into the initial epithelial host response to Aspergillus.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Pared Celular/inmunología , Células Epiteliales/inmunología , Neutrófilos/inmunología , Aspergilosis/microbiología , Línea Celular Tumoral , Células Epiteliales/microbiología , Humanos , Pulmón/inmunología , Pulmón/microbiología , Melaninas/inmunología , Naftoles/inmunología , Esporas Fúngicas/inmunología
9.
J Pediatr Surg ; 54(11): 2392-2397, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31036368

RESUMEN

BACKGROUND: A single dose of IV fish oil (FO) before hepatic ischemia reperfusion injury (HIRI) increases hepatocyte proliferation and reduces necrosis in wild type (WT) mice. It has been suggested that the GPR120 receptor on Kupffer cells mediates FO's ability to reduce HIRI. The purpose of this study was to determine whether GPR120 is required for FO to reduce HIRI. METHODS: Sixty-four (n = 8/group) adult male WT (C57BL/6) and GPR120 knockout (KO) mice received IV FO (1 g/kg) or saline 1 h prior to HIRI or sham operation. Mice were euthanized 24 h postoperatively for analysis of hepatic histology, NFκB activity, and serum alanine transaminase (ALT) levels. RESULTS: FO pretreated livers had less necrosis after HIRI than saline pretreated livers in both WT (mean ±â€¯SEM 25.9 ±â€¯7.3% less, P = 0.007) and KO (36.6 ±â€¯7.3% less, P < 0.0001) mice. There was no significant difference in percent necrosis between WT-FO and KO-FO groups. Sham groups demonstrated minimal necrosis (0-1.9%). Mean [95% CI] ALT after HIRI was significantly higher (P = 0.04) in WT-Saline mice (1604 U/L [751-3427]) compared to WT-FO (321 U/L [150-686]) but was not significantly higher in KO-Saline mice compared to KO-FO. There were no differences in ALT between WT-FO and KO-FO mice who underwent HIRI or between groups who underwent sham surgery. There were no differences in NFκB or IKKß activation among groups as measured by Western blot analysis. CONCLUSIONS: IV FO pretreatment was able to reduce HIRI in GPR120 KO mice, suggesting the hepatoprotective effects of FO are not mediated by GPR120 alone.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Daño por Reperfusión/prevención & control , Alanina Transaminasa/sangre , Animales , Proliferación Celular , Hepatocitos/citología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p50 de NF-kappa B/metabolismo , Necrosis/patología , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...