Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Transl Radiat Oncol ; 49: 100872, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39434803

RESUMEN

Background and purpose: The use of stereotactic ablative radiotherapy (SABR) for prostate cancer has increased significantly. However, SABR can elevate the risk of moderate gastrointestinal (GI) side effects. Rectal spacers mitigate this risk by reducing the rectal dose. This study evaluates the impact of rectal spacers in MR-guided adaptive radiotherapy (MRgART) for prostate SABR. Materials and methods: A retrospective analysis was conducted on twenty patients with localised prostate cancer treated on the Unity MR-Linac at a single centre. Half of the cohort (n = 10) had rectal spacers placed before treatment. The adapt-to-shape strategy was used for online MRgART, and non-adapted plans were later generated offline for comparison. Dosimetric assessments were made between spacer and no-spacer cohorts, and between online adapted and non-adapted plans. Clinician-reported outcomes for genitourinary (GU) and GI toxicity were assessed at 3-, 6-, and 12-months post-treatment using Common Terminology Criteria for Adverse Events v.5.0. Results: No grade 2 or higher toxicity was observed in either cohort. Overall, the dosimetric analysis showed comparable results between the cohorts for target volumes, with D95% of 36.3 Gy in the spacer cohort and 36.0 Gy in the no-spacer cohort (p = 0.08). The spacer cohort demonstrated significant benefits in all rectal dose objectives (p < 0.0001) and in some bladder objectives (V40, p = 0.03; V36, p = 0.03). Failure rates for achieving planning objectives were similar between spacer and no-spacer groups for online adapted plans, with most rates ranging from 0 % to 4 % in both groups. Conclusion: The findings from this cohort suggest that MRgART is safe and effective for prostate SABR, with comparable toxicity rates in both spacer and no-spacer cohorts. While rectal spacers offer dosimetric advantages, the adaptive nature of MRgART can mitigate some dosimetric disparities, potentially reducing the need for invasive spacer placement. However, further studies with larger patient populations are needed to confirm these results.

2.
J Med Radiat Sci ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397350

RESUMEN

INTRODUCTION: Online adaptive radiotherapy is well suited for stereotactic ablative radiotherapy (SABR) in pancreatic cancer due to considerable intrafractional tumour motion. This study aimed to assess intrafraction motion and generate adjusted planning target volume (PTV) margins required for online adaptive radiotherapy in pancreatic cancer treatment using abdominal compression on the magnetic resonance linear accelerator (MR-Linac). METHODS: Motion monitoring images obtained from 67 fractions for 15 previously treated pancreatic cancer patients were analysed. All patients received SABR (50 Gy in five fractions) on the MR-Linac using abdominal compression. The analysis included quantification of intrafraction motion, leading to the development of adjusted PTV margins. The dosimetric impact of implementing the adjusted PTV was then evaluated in a cohort of 20 patients. RESULTS: Intrafraction motion indicated an average target displacement of 1-3 mm, resulting in an adjusted PTV margin of 2 mm in the right-left and superior-inferior directions, and 3 mm in the anterior-posterior direction. Plans incorporating these adjusted margins consistently demonstrated improved dose to target volumes, with improvements averaging 1.5 Gy in CTV D99%, 4.9 Gy in PTV D99% and 1.2 Gy in PTV-high D90%, and better sparing of the organs at risk (OAR). CONCLUSIONS: The improved target volume coverage and reduced OAR dose suggest potential for reducing current clinical margins for MR-Linac treatment. However, it is important to note that decreasing margins may reduce safeguards against geographical misses. Nonetheless, the continued integration of gating systems on MR-Linacs could provide confidence in adopting reduced margins.

3.
Clin Transl Radiat Oncol ; 48: 100816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39130107

RESUMEN

Background and purpose: Peer review is an important component of quality assurance in radiotherapy. To our knowledge, there are no studies reporting on the feasibility and outcomes of the peer review process for magnetic resonance (MR) guided radiotherapy (MRgRT) on the MR linear accelerator (MR-Linac) despite the planning complexity involved and its evolving clinical indications. This study aimed to quantify the rate of change in treatment plans post-peer review and the time and resources required. Materials and methods: Fifty-five cases presented at weekly MR-Linac peer review meetings across two centres from 8 June to 21 September 2023 were prospectively collected. Cases were analysed to determine the rate and extent of plan changes based on the Peer Review Audit Tool for radiation oncology (PRAT) developed by the Royal Australian and New Zealand College of Radiologists (RANZCR). Results: Peer review resulted in changes to 36.4 % of treatment plans (n = 20), with 3.6 % (n = 2) having major changes requiring deferment of treatment. The most frequent changes were to organs at risk (OAR) volumes involving both delineation and increased OAR sparing (16.4 %, n = 9), total dose and fractionation (10.9 %, n = 6) and target volume dose coverage (5.5 %, n = 3). Patients with SBRT plans (39.1 % cf 22.2 %), oligometastatic/oligoprogressive sites (38.1 % cf 30.7 %) and reirradiation cases (41.2 % cf 34.2 %) had higher rates of change. Cases took a mean of 7 min (range 2-15 minutes) to discuss. Conclusion: The high rates of plan changes support the value of peer review in MRgRT. We recommend, where possible that all MRgRT cases, particularly those involving SBRT plans, oligometastatic/oligoprogressive sites, and/or reirradiation, be subject to peer review.

4.
Curr Oncol ; 30(10): 9230-9243, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37887567

RESUMEN

The utilization of stereotactic body radiation therapy for the treatment of liver metastasis has been widely studied and has demonstrated favorable local control outcomes. However, several predictive factors play a crucial role in the efficacy of stereotactic body radiation therapy, such as the number and size (volume) of metastatic liver lesions, the primary tumor site (histology), molecular biomarkers (e.g., KRAS and TP53 mutation), the use of systemic therapy prior to SBRT, the radiation dose, and the use of advanced technology and organ motion management during SBRT. These prognostic factors need to be considered when clinical trials are designed to evaluate the efficacy of SBRT for liver metastases.


Asunto(s)
Neoplasias Hepáticas , Radiocirugia , Humanos , Neoplasias Hepáticas/cirugía
5.
J Med Radiat Sci ; 70(4): 491-497, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37540059

RESUMEN

The magnetic resonance linear accelerator (MR-Linac) offers a new treatment paradigm, providing improved visualisation of targets and organs at risk while allowing for daily adaptation of treatment plans in real time. Online MR-guided adaptive treatment has reduced treatment uncertainties; however, the additional treatment time and resource requirements may be a concern. We present our experience of integrating an MR-Linac into a busy department and provide recommendations for improved clinical and resource efficiency. Furthermore, we discuss potential future technological innovations that can further optimise clinical productivity in a busy department.


Asunto(s)
Imagen por Resonancia Magnética , Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador
6.
Phys Med Biol ; 68(19)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37652043

RESUMEN

Objective. This study aimed to investigate the dosimetric impact of using population-based relative electron density (RED) overrides in lieu of simulation computerized tomography (CT) in a magnetic resonance linear accelerator (MRL) workflow for male pelvis patients. Additionally, the feasibility of using prostate specific membrane antigen positron emission tomography/CT (PSMA-PET/CT) scans to assess patients' eligibility for this proposed workflow was examined.Approach. In this study, 74 male pelvis patients treated on an Elekta Unity 1.5 T MRL were retrospectively selected. The patients' individual RED values for 8 organs of interest were extracted from their simulation-CT images to establish population-based RED values. These values were used to generate individual (IndD) and population-based (PopD) RED dose plans, representing current and proposed MRL workflows, respectively. Lastly, this study compared RED values obtained from CT and PET-CT scanners in a phantom and a subset of patients.Results. Population-based RED values were mostly within two standard deviations of ICRU Report 46 values. PopD plans were comparable to IndD plans, with the average %difference magnitudes of 0.5%, 0.6%, and 0.6% for mean dose (all organs), D0.1cm3(non-target organs) and D95%/D98% (target organs), respectively. Both phantom and patient PET-CT derived RED values had high agreement with corresponding CT-derived values, with correlation coefficients ≥ 0.9.Significance. Population-based RED values were considered suitable in a simulation-free MRL treatment workflow. Utilizing these RED values resulted in similar dosimetric uncertainties as per the current workflow. Initial findings also suggested that PET-CT scans may be used to assess prospective patients' eligibility for the proposed workflow. Future investigations will evaluate the clinical feasibility of implementing this workflow for prospective patients in the clinical setting. This is aimed to reduce patient burden during radiotherapy and increase department efficiencies.


Asunto(s)
Electrones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
7.
J Med Radiat Sci ; 70(2): 199-205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890690

RESUMEN

We present the first case in the literature of a 78-year-old woman with recurrent cardiac sarcoma adjacent to a bioprosthetic mitral valve treated with magnetic resonance linear accelerator (MR-Linac) guided adaptive stereotactic ablative body radiotherapy (SABR). The patient was treated using a 1.5 T Unity MR-Linac system (Elekta AB, Stockholm, Sweden). The mean gross tumour volume (GTV) size was 17.9 cm3 (range 16.6-18.9 cm3 ) based on daily contours and the mean dose received by the GTV was 41.4 Gy (range 40.9-41.6 Gy) in five fractions. All fractions were completed as planned and the patient tolerated the treatment well with no acute toxicity reported. Follow-up appointments at 2 and 5 months after the last treatment showed stable disease and good symptomatic relief. Results of transthoracic echocardiogram after radiotherapy showed that the mitral valve prosthesis was normally seated with regular functionality. This study provides evidence that MR-Linac guided adaptive SABR is a safe and viable option for the treatment of recurrent cardiac sarcoma with mitral valve bioprosthesis.


Asunto(s)
Bioprótesis , Radiocirugia , Sarcoma , Femenino , Humanos , Anciano , Válvula Mitral/cirugía , Planificación de la Radioterapia Asistida por Computador/métodos , Sarcoma/diagnóstico por imagen , Sarcoma/radioterapia , Sarcoma/cirugía
8.
J Med Radiat Sci ; 70 Suppl 2: 94-98, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36572532

RESUMEN

The introduction of magnetic resonance (MR) linear accelerators (MR-Linac) marks the beginning of a new era in radiotherapy. MR-Linac systems are currently being operated by teams of radiation therapists (RTs), radiation oncology medical physicists (ROMPs) and radiation oncologists (ROs) due to the diverse and complex tasks required to deliver treatment. This is resource-intensive and logistically challenging. RT-led service delivery at the treatment console is paramount to simplify the process and make the best use of this technology for suitable patients with commonly treated anatomical sites. This article will discuss the experiences of our department in developing and implementing an RT-led workflow on the 1.5 T MR-Linac.


Asunto(s)
Oncología por Radiación , Radioterapia Guiada por Imagen , Humanos , Imagen por Resonancia Magnética , Planificación de la Radioterapia Asistida por Computador , Espectroscopía de Resonancia Magnética
9.
J Med Radiat Sci ; 70 Suppl 2: 99-106, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36502538

RESUMEN

The introduction of magnetic resonance (MR) linear accelerators (MR-Linacs) into radiotherapy departments has increased in recent years owing to its unique advantages including the ability to deliver online adaptive radiotherapy. However, most radiation oncology professionals are not accustomed to working with MR technology. The integration of an MR-Linac into routine practice requires many considerations including MR safety, MR image acquisition and optimisation, image interpretation and adaptive radiotherapy strategies. This article provides an overview of training and credentialing requirements for radiation oncology professionals to develop competency and efficiency in delivering treatment safely on an MR-Linac.


Asunto(s)
Oncólogos de Radiación , Radioterapia Guiada por Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Aceleradores de Partículas , Radioterapia Guiada por Imagen/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Espectroscopía de Resonancia Magnética , Habilitación Profesional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...