Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37371910

RESUMEN

The vegetal polyphenol curcumin displays beneficial effects against skeletal muscle derangement induced by oxidative stress, disuse or aging. Since oxidative stress and inflammation are involved in the progression of muscle dystrophy, the effects of curcumin administration were investigated in the diaphragm of mdx mice injected intraperitoneally or subcutaneously with curcumin for 4-12-24 weeks. Curcumin treatment independently of the way and duration of administration (i) ameliorated myofiber maturation index without affecting myofiber necrosis, inflammation and degree of fibrosis; (ii) counteracted the decrease in type 2X and 2B fiber percentage; (iii) increased about 30% both twitch and tetanic tensions of diaphragm strips; (iv) reduced myosin nitrotyrosination and tropomyosin oxidation; (v) acted on two opposite nNOS regulators by decreasing active AMP-Kinase and increasing SERCA1 protein levels, the latter effect being detectable also in myotube cultures from mdx satellite cells. Interestingly, increased contractility, decreased myosin nitrotyrosination and SERCA1 upregulation were also detectable in the mdx diaphragm after a 4-week administration of the NOS inhibitor 7-Nitroindazole, and were not improved further by a combined treatment. In conclusion, curcumin has beneficial effects on the dystrophic muscle, mechanistically acting for the containment of a deregulated nNOS activity.

2.
Genomics ; 113(6): 3782-3792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506887

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death worldwide. A deeper characterization of regional transcription patterns within different heart chambers may aid to improve our understanding of the molecular mechanisms involved in myocardial function and further, our ability to develop novel therapeutic strategies. Here, we used RNA sequencing to determine differentially expressed protein coding (PC) and long non-coding (lncRNA) transcripts within the heart chambers across seven vertebrate species and identified evolutionarily conserved chamber specific genes, lncRNAs and pathways. We investigated lncRNA homologs based on sequence, secondary structure, synteny and expressional conservation and found most lncRNAs to be conserved by synteny. Regional co-expression patterns of transcripts are modulated by multiple factors, including genomic overlap, strandedness and transcript biotype. Finally, we provide a community resource designated EvoACTG, which informs researchers on the conserved yet intertwined nature of the coding and non-coding cardiac transcriptome across popular model organisms in CVD research.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Genoma , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Sintenía
3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34465617

RESUMEN

Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of Ercc1, a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, Tert-deficient mice with reduced telomere length, and a mouse model of human Hutchinson-Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in Ercc1 cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life.


Asunto(s)
Envejecimiento Prematuro/genética , Senescencia Celular/genética , Inestabilidad Genómica/genética , Envejecimiento/genética , Animales , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocardio/metabolismo
4.
Sci Rep ; 10(1): 8136, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424227

RESUMEN

We investigated the transcriptomic landscape of the murine myocardium along the course of natural aging and in three distinct mouse models of premature aging with established aging-related cardiac dysfunction. Genome-wide total RNA-seq was performed and the expression patterns of protein-coding genes and non-coding RNAs were compared between hearts from naturally aging mice, mice with cardiac-specific deficiency of a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity and mice with reduced telomere length. Our results demonstrate that no dramatic changes are evident in the transcriptomes of naturally senescent murine hearts until two years of age, in contrast to the transcriptome of accelerated aged mice. Additionally, these mice displayed model-specific alterations of the expression levels of protein-coding and non-coding genes with hardly any overlap with age-related signatures. Our data demonstrate very limited similarities between the transcriptomes of all our murine aging models and question their reliability to study human cardiovascular senescence.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Proteínas/genética , Envejecimiento/metabolismo , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Animales , Femenino , Humanos , Ictiosis Lamelar/genética , Ictiosis Lamelar/metabolismo , Ictiosis Lamelar/fisiopatología , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas/metabolismo , Telómero/genética , Telómero/metabolismo , Acortamiento del Telómero , Transcriptoma
5.
Cardiovasc Res ; 116(7): 1240-1241, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031589

Asunto(s)
Corazón , ARN Circular
6.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30559069

RESUMEN

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.


Asunto(s)
Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Trasplante de Corazón/métodos , MicroARNs/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías/genética , Proliferación Celular/fisiología , Insuficiencia Cardíaca/genética , Humanos , Ratones , MicroARNs/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
7.
Biochem Pharmacol ; 155: 468-478, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30059676

RESUMEN

The majority of the human genome encodes non-coding RNAs (ncRNAs), species of RNA without protein-coding potential but with powerful regulatory functions in disease onset and progression. Functional studies demonstrate that both coding and ncRNAs underlie various mechanisms in heart disease and that molecules targeting RNA species show promising efficacy in preclinical development. Accompanying the exciting developments in basic RNA biology, an equally provocative field has flourished for the design of RNA-based strategies to generate innovative types of therapeutics against these new "druggable" targets, going beyond our current repertoire of small chemistry or biologics. Here, we review the (bio)chemical basis of RNA-based drug design, provide examples that show promise as translatable drug products in preclinical studies, give an insight in the current barriers that hamper straight-forward clinical translation and discuss future directions that may overcome these hurdles to expand the current pharmacotherapy for myocardial disorders.


Asunto(s)
Diseño de Fármacos , Terapia Genética/métodos , Cardiopatías/genética , Cardiopatías/terapia , ARN/administración & dosificación , ARN/genética , Animales , Edición Génica/métodos , Edición Génica/tendencias , Terapia Genética/tendencias , Humanos , MicroARNs/administración & dosificación , MicroARNs/genética , ARN Largo no Codificante/administración & dosificación , ARN Largo no Codificante/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , ARN no Traducido/administración & dosificación , ARN no Traducido/genética
8.
Front Pharmacol ; 9: 71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520230

RESUMEN

Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 µg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...