Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223169

RESUMEN

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

2.
IEEE Trans Med Imaging ; 43(1): 28-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37342956

RESUMEN

Grating-based X-ray phase-contrast and in particular dark-field radiography are promising new imaging modalities for medical applications. Currently, the potential advantage of dark-field imaging in early-stage diagnosis of pulmonary diseases in humans is being investigated. These studies make use of a comparatively large scanning interferometer at short acquisition times, which comes at the expense of a significantly reduced mechanical stability as compared to tabletop laboratory setups. Vibrations create random fluctuations of the grating alignment, causing artifacts in the resulting images. Here, we describe a novel maximum likelihood method for estimating this motion, thereby preventing these artifacts. It is tailored to scanning setups and does not require any sample-free areas. Unlike any previously described method, it accounts for motion in between as well as during exposures.

3.
IEEE Trans Med Imaging ; 43(4): 1422-1433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032773

RESUMEN

X-ray dark-field imaging enables a spatially-resolved visualization of ultra-small-angle X-ray scattering. Using phantom measurements, we demonstrate that a material's effective dark-field signal may be reduced by modification of the visibility spectrum by other dark-field-active objects in the beam. This is the dark-field equivalent of conventional beam-hardening, and is distinct from related, known effects, where the dark-field signal is modified by attenuation or phase shifts. We present a theoretical model for this group of effects and verify it by comparison to the measurements. These findings have significant implications for the interpretation of dark-field signal strength in polychromatic measurements.


Asunto(s)
Modelos Teóricos , Tomografía Computarizada por Rayos X , Rayos X , Tomografía Computarizada por Rayos X/métodos , Radiografía , Fantasmas de Imagen
4.
PLoS One ; 18(4): e0279323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058505

RESUMEN

BACKGROUND: The differentiation of minimal-fat-or low-fat-angiomyolipomas from other renal lesions is clinically challenging in conventional computed tomography. In this work, we have assessed the potential of grating-based x-ray phase-contrast computed tomography (GBPC-CT) for visualization and quantitative differentiation of minimal-fat angiomyolipomas (mfAMLs) and oncocytomas from renal cell carcinomas (RCCs) on ex vivo renal samples. MATERIALS AND METHODS: Laboratory GBPC-CT was performed at 40 kVp on 28 ex vivo kidney specimens including five angiomyolipomas with three minimal-fat (mfAMLs) and two high-fat (hfAMLs) subtypes as well as three oncocytomas and 20 RCCs with eight clear cell (ccRCCs), seven papillary (pRCCs) and five chromophobe RCC (chrRCC) subtypes. Quantitative values of conventional Hounsfield units (HU) and phase-contrast Hounsfield units (HUp) were determined and histogram analysis was performed on GBPC-CT and grating-based attenuation-contrast computed tomography (GBAC-CT) slices for each specimen. For comparison, the same specimens were imaged at a 3T magnetic resonance imaging (MRI) scanner. RESULTS: We have successfully matched GBPC-CT images with clinical MRI and histology, as GBPC-CT presented with increased soft tissue contrast compared to absorption-based images. GBPC-CT images revealed a qualitative and quantitative difference between mfAML samples (58±4 HUp) and oncocytomas (44±10 HUp, p = 0.057) and RCCs (ccRCCs: 40±12 HUp, p = 0.012; pRCCs: 43±9 HUp, p = 0.017; chrRCCs: 40±7 HUp, p = 0.057) in contrast to corresponding laboratory attenuation-contrast CT and clinical MRI, although not all differences were statistically significant. Due to the heterogeneity and lower signal of oncocytomas, quantitative differentiation of the samples based on HUp or in combination with HUs was not possible. CONCLUSIONS: GBPC-CT allows quantitative differentiation of minimal-fat angiomyolipomas from pRCCs and ccRCCs in contrast to absorption-based imaging and clinical MRI.


Asunto(s)
Adenoma Oxifílico , Angiomiolipoma , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Angiomiolipoma/diagnóstico por imagen , Angiomiolipoma/patología , Rayos X , Tomografía Computarizada por Rayos X/métodos , Adenoma Oxifílico/diagnóstico por imagen , Diagnóstico Diferencial , Estudios Retrospectivos
5.
Eur Radiol ; 33(8): 5549-5556, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36806571

RESUMEN

OBJECTIVES: To compare the visibility of anatomical structures and overall quality of the attenuation images obtained with a dark-field X-ray radiography prototype with those from a commercial radiography system. METHODS: Each of the 65 patients recruited for this study obtained a thorax radiograph at the prototype and a reference radiograph at the commercial system. Five radiologists independently assessed the visibility of anatomical structures, the level of motion artifacts, and the overall image quality of all attenuation images on a five-point scale, with 5 points being the highest rating. The average scores were compared between the two image types. The differences were evaluated using an area under the curve (AUC) based z-test with a significance level of p ≤ 0.05. To assess the variability among the images, the distributions of the average scores per image were compared between the systems. RESULTS: The overall image quality was rated high for both devices, 4.2 for the prototype and 4.6 for the commercial system. The rating scores varied only slightly between both image types, especially for structures relevant to lung assessment, where the images from the commercial system were graded slightly higher. The differences were statistically significant for all criteria except for the bronchial structures, the cardiophrenic recess, and the carina. CONCLUSIONS: The attenuation images acquired with the prototype were assigned a high diagnostic quality despite a lower resolution and the presence of motion artifacts. Thus, the attenuation-based radiographs from the prototype can be used for diagnosis, eliminating the need for an additional conventional radiograph. KEY POINTS: • Despite a low tube voltage (70 kVp) and comparably long acquisition time, the attenuation images from the dark-field chest radiography system achieved diagnostic quality for lung assessment. • Commercial chest radiographs obtained a mean rating score regarding their diagnostic quality of 4.6 out of 5, and the grating-based images had a slightly lower mean rating score of 4.2 out of 5. • The difference in rating scores for anatomical structures relevant to lung assessment is below 5%.


Asunto(s)
Radiografía Torácica , Tórax , Humanos , Rayos X , Radiografía Torácica/métodos , Radiografía , Pulmón/diagnóstico por imagen
6.
Opt Express ; 31(1): 635-650, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606998

RESUMEN

Wavefront-marking X-ray imaging techniques use e.g., sandpaper or a grating to generate intensity fluctuations, and analyze their distortion by the sample in order to retrieve attenuation, phase-contrast, and dark-field information. Phase contrast yields an improved visibility of soft-tissue specimens, while dark-field reveals small-angle scatter from sub-resolution structures. Both have found many biomedical and engineering applications. The previously developed Unified Modulated Pattern Analysis (UMPA) model extracts these modalities from wavefront-marking data. We here present a new UMPA implementation, capable of rapidly processing large datasets and featuring capabilities to greatly extend the field of view. We also discuss possible artifacts and additional new features.

7.
Commun Med (Lond) ; 2(1): 147, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411311

RESUMEN

BACKGROUND: Currently, alternative medical imaging methods for the assessment of pulmonary involvement in patients infected with COVID-19 are sought that combine a higher sensitivity than conventional (attenuation-based) chest radiography with a lower radiation dose than CT imaging. METHODS: Sixty patients with COVID-19-associated lung changes in a CT scan and 40 subjects without pathologic lung changes visible in the CT scan were included (in total, 100, 59 male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a conventional attenuation image in one image acquisition. Attenuation images alone, dark-field images alone, and both displayed simultaneously were assessed for the presence of COVID-19-associated lung changes on a scale from 1 to 6 (1 = surely not, 6 = surely) by four blinded radiologists. Statistical analysis was performed by evaluation of the area under the receiver-operator-characteristics curves (AUC) using Obuchowski's method with a 0.05 level of significance. RESULTS: We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia than attenuation-based imaging and that the combination of both is superior to one imaging modality alone. Furthermore, a quantitative image analysis shows a significant reduction of dark-field signals for COVID-19-patients. CONCLUSIONS: Dark-field imaging complements and improves conventional radiography for the visualisation and detection of COVID-19-pneumonia.


Computed tomography (CT) imaging uses X-rays to obtain images of the inside of the body. It is used to look at lung damage in patients with COVID-19. However, CT imaging exposes the patient to a considerable amount of radiation. As radiation exposure can lead to the development of cancer, exposure should be minimised. Conventional plain X-ray imaging uses lower amounts of radiation but lacks sensitivity. We used dark-field chest X-ray imaging, which also uses low amounts of radiation, to assess the lungs of patients with COVID-19. Radiologists identified pneumonia in patients more easily from dark-field images than from usual plain X-ray images. We anticipate dark-field X-ray imaging will be useful to follow-up patients suspected of having lung damage.

8.
PLoS One ; 17(8): e0273315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037163

RESUMEN

X-ray directional dark-field imaging is a recent technique that can reveal a sample's small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution.


Asunto(s)
Algoritmos , Radiografía , Rayos X , Anisotropía , Radiografía/métodos
10.
Eur Radiol Exp ; 6(1): 9, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229244

RESUMEN

BACKGROUND: Spirometry and conventional chest x-ray have limitations in investigating early emphysema, while computed tomography, the reference imaging method in this context, is not part of routine patient care due to its higher radiation dose. In this work, we investigated a novel low-dose imaging modality, dark-field chest x-ray, for the evaluation of emphysema in patients with alpha1-antitrypsin deficiency. METHODS: By exploiting wave properties of x-rays for contrast formation, dark-field chest x-ray visualises the structural integrity of the alveoli, represented by a high signal over the lungs in the dark-field image. We investigated four patients with alpha1-antitrypsin deficiency with a novel dark-field x-ray prototype and simultaneous conventional chest x-ray. The extent of pulmonary function impairment was assessed by pulmonary function measurement and regional emphysema distribution was compared with CT in one patient. RESULTS: We show that dark-field chest x-ray visualises the extent of pulmonary emphysema displaying severity and regional differences. Areas with low dark-field signal correlate with emphysematous changes detected by computed tomography using a threshold of -950 Hounsfield units. The airway parameters obtained by whole-body plethysmography and single breath diffusing capacity of the lungs for carbon monoxide demonstrated typical changes of advanced emphysema. CONCLUSIONS: Dark-field chest x-ray directly visualised the severity and regional distribution of pulmonary emphysema compared to conventional chest x-ray in patients with alpha1-antitrypsin deficiency. Due to the ultra-low radiation dose in comparison to computed tomography, dark-field chest x-ray could be beneficial for long-term follow-up in these patients.


Asunto(s)
Enfisema , Enfisema Pulmonar , Enfisema/diagnóstico por imagen , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X , Rayos X
11.
IEEE Trans Med Imaging ; 41(4): 895-902, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34748485

RESUMEN

Dark-field radiography of the human chest is a promising novel imaging technique with the potential of becoming a valuable tool for the early diagnosis of chronic obstructive pulmonary disease and other diseases of the lung. The large field-of-view needed for clinical purposes could recently be achieved by a scanning system. While this approach overcomes the limited availability of large area grating structures, it also results in a prolonged image acquisition time, leading to concomitant motion artifacts caused by intrathoracic movements (e.g. the heartbeat). Here we report on a motion artifact reduction algorithm for a dark-field X-ray scanning system, and its successful evaluation in a simulated chest phantom and human in vivo chest X-ray dark-field data. By partitioning the acquired data into virtual scans with shortened acquisition time, such motion artifacts may be reduced or even fully avoided. Our results demonstrate that motion artifacts (e.g. induced by cardiac motion or diaphragmatic movements) can effectively be reduced, thus significantly improving the image quality of dark-field chest radiographs.


Asunto(s)
Algoritmos , Artefactos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Radiografía
13.
Sci Rep ; 11(1): 23504, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873265

RESUMEN

X-ray dark-field imaging is a widely researched imaging technique, with many studies on samples of very different dimensions and at very different resolutions. However, retrieval of three-dimensional (3D) information for human thorax sized objects has not yet been demonstrated. We present a method, similar to classic tomography and tomosynthesis, to obtain 3D information in X-ray dark-field imaging. Here, the sample is moved through the divergent beam of a Talbot-Lau interferometer. Projections of features at different distances from the source seemingly move with different velocities over the detector, due to the cone beam geometry. The reconstruction of different focal planes exploits this effect. We imaged a chest phantom and were able to locate different features in the sample (e.g. the ribs, and two sample vials filled with water and air and placed in the phantom) to corresponding focal planes. Furthermore, we found that image quality and detectability of features is sufficient for image reconstruction with a dose of 68 µSv at an effective pixel size of [Formula: see text]. Therefore, we successfully demonstrated that the presented method is able to retrieve 3D information in X-ray dark-field imaging.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Interferometría/métodos , Fantasmas de Imagen , Tórax/diagnóstico por imagen , Rayos X
14.
Lancet Digit Health ; 3(11): e733-e744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711378

RESUMEN

BACKGROUND: Although advanced medical imaging technologies give detailed diagnostic information, a low-dose, fast, and inexpensive option for early detection of respiratory diseases and follow-ups is still lacking. The novel method of x-ray dark-field chest imaging might fill this gap but has not yet been studied in living humans. Enabling the assessment of microstructural changes in lung parenchyma, this technique presents a more sensitive alternative to conventional chest x-rays, and yet requires only a fraction of the dose applied in CT. We studied the application of this technique to assess pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). METHODS: In this diagnostic accuracy study, we designed and built a novel dark-field chest x-ray system (Technical University of Munich, Munich, Germany)-which is also capable of simultaneously acquiring a conventional thorax radiograph (7 s, 0·035 mSv effective dose). Patients who had undergone a medically indicated chest CT were recruited from the department of Radiology and Pneumology of our site (Klinikum rechts der Isar, Technical University of Munich, Munich, Germany). Patients with pulmonary pathologies, or conditions other than COPD, that might influence lung parenchyma were excluded. For patients with different disease stages of pulmonary emphysema, x-ray dark-field images and CT images were acquired and visually assessed by five readers. Pulmonary function tests (spirometry and body plethysmography) were performed for every patient and for a subgroup of patients the measurement of diffusion capacity was performed. Individual patient datasets were statistically evaluated using correlation testing, rank-based analysis of variance, and pair-wise post-hoc comparison. FINDINGS: Between October, 2018 and December, 2019 we enrolled 77 patients. Compared with CT-based parameters (quantitative emphysema ρ=-0·27, p=0·089 and visual emphysema ρ=-0·45, p=0·0028), the dark-field signal (ρ=0·62, p<0·0001) yields a stronger correlation with lung diffusion capacity in the evaluated cohort. Emphysema assessment based on dark-field chest x-ray features yields consistent conclusions with findings from visual CT image interpretation and shows improved diagnostic performance than conventional clinical tests characterising emphysema. Pair-wise comparison of corresponding test parameters between adjacent visual emphysema severity groups (CT-based, reference standard) showed higher effect sizes. The mean effect size over the group comparisons (absent-trace, trace-mild, mild-moderate, and moderate-confluent or advanced destructive visual emphysema grades) for the COPD assessment test score is 0·21, for forced expiratory volume in 1 s (FEV1)/functional vital capacity is 0·25, for FEV1% of predicted is 0·23, for residual volume % of predicted is 0·24, for CT emphysema index is 0·35, for dark-field signal homogeneity within lungs is 0·38, for dark-field signal texture within lungs is 0·38, and for dark-field-based emphysema severity is 0·42. INTERPRETATION: X-ray dark-field chest imaging allows the diagnosis of pulmonary emphysema in patients with COPD because this technique provides relevant information representing the structural condition of lung parenchyma. This technique might offer a low radiation dose alternative to CT in COPD and potentially other lung disorders. FUNDING: European Research Council, Deutsche Forschungsgemeinschaft, Royal Philips, and Karlsruhe Nano Micro Facility.


Asunto(s)
Enfisema/diagnóstico , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico , Radiografía Torácica/métodos , Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Enfisema/diagnóstico por imagen , Femenino , Volumen Espiratorio Forzado , Alemania , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Índice de Severidad de la Enfermedad , Fumar , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
15.
Sci Rep ; 11(1): 15857, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349135

RESUMEN

We present a method to generate synthetic thorax radiographs with realistic nodules from CT scans, and a perfect ground truth knowledge. We evaluated the detection performance of nine radiologists and two convolutional neural networks in a reader study. Nodules were artificially inserted into the lung of a CT volume and synthetic radiographs were obtained by forward-projecting the volume. Hence, our framework allowed for a detailed evaluation of CAD systems' and radiologists' performance due to the availability of accurate ground-truth labels for nodules from synthetic data. Radiographs for network training (U-Net and RetinaNet) were generated from 855 CT scans of a public dataset. For the reader study, 201 radiographs were generated from 21 nodule-free CT scans with altering nodule positions, sizes and nodule counts of inserted nodules. Average true positive detections by nine radiologists were 248.8 nodules, 51.7 false positive predicted nodules and 121.2 false negative predicted nodules. The best performing CAD system achieved 268 true positives, 66 false positives and 102 false negatives. Corresponding weighted alternative free response operating characteristic figure-of-merits (wAFROC FOM) for the radiologists range from 0.54 to 0.87 compared to a value of 0.81 (CI 0.75-0.87) for the best performing CNN. The CNN did not perform significantly better against the combined average of the 9 readers (p = 0.49). Paramediastinal nodules accounted for most false positive and false negative detections by readers, which can be explained by the presence of more tissue in this area.


Asunto(s)
Nódulos Pulmonares Múltiples/diagnóstico , Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Radiólogos/estadística & datos numéricos , Nódulo Pulmonar Solitario/diagnóstico , Humanos , Variaciones Dependientes del Observador , Curva ROC
16.
Med Phys ; 48(10): 6152-6159, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34314019

RESUMEN

PURPOSE: The purpose of this study was to evaluate the dose characteristic for patient examinations at the first clinical X-ray dark-field chest radiography system and to determine whether the effective patient dose is within a clinically acceptable dose range. METHODS: A clinical setup for grating-based dark-field chest radiography was constructed and commissioned, operating at a tube voltage of 70 kVp. Thermoluminescent dosimeter (TLD) measurements were conducted using an anthropomorphic phantom modeling the reference person to obtain a conversion coefficient relating dose area product (DAP) to effective patient dose at the dark-field system. For 92 patients, the DAP values for posterior-anterior measurements were collected at the dark-field system. Using the previously determined conversion coefficient, the effective dose was calculated. RESULTS: A reference person, modeled by an anthropomorphic phantom, receives an effective dose of 35 µSv. For the examined patients, a mean effective dose of 39 µSv was found. CONCLUSIONS: The effective dose at the clinical dark-field radiography system, generating both attenuation and dark-field images, is within the range of reported standard dose values for chest radiography.


Asunto(s)
Radiometría , Dosimetría Termoluminiscente , Humanos , Fantasmas de Imagen , Dosis de Radiación , Radiografía
17.
IEEE Trans Med Imaging ; 40(6): 1568-1578, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33617451

RESUMEN

Diagnostic lung imaging is often associated with high radiation dose and lacks sensitivity, especially for diagnosing early stages of structural lung diseases. Therefore, diagnostic imaging methods are required which provide sound diagnosis of lung diseases with a high sensitivity as well as low patient dose. In small animal experiments, the sensitivity of grating-based X-ray dark-field imaging to structural changes in the lung tissue was demonstrated. The energy-dependence of the X-ray dark-field signal of lung tissue is a function of its microstructure and not yet known. Furthermore, conventional X-ray dark-field imaging is not capable of differentiating different types of pathological changes, such as fibrosis and emphysema. Here we demonstrate the potential diagnostic power of grating-based X-ray dark-field in combination with spectral imaging in human chest radiography for the direct differentiation of lung diseases. We investigated the energy-dependent linear diffusion coefficient of simulated lung tissue with different diseases in wave-propagation simulations and validated the results with analytical calculations. Additionally, we modeled spectral X-ray dark-field chest radiography scans to exploit these differences in energy-dependency. The results demonstrate the potential to directly differentiate structural changes in the human lung. Consequently, grating-based spectral X-ray dark-field imaging potentially contributes to the differential diagnosis of structural lung diseases at a clinically relevant dose level.


Asunto(s)
Enfermedades Pulmonares , Enfisema Pulmonar , Animales , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Rayos X
18.
Eur Radiol Exp ; 5(1): 6, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33495889

RESUMEN

BACKGROUND: Grating-based x-ray dark-field and phase-contrast imaging allow extracting information about refraction and small-angle scatter, beyond conventional attenuation. A step towards clinical translation has recently been achieved, allowing further investigation on humans. METHODS: After the ethics committee approval, we scanned the full body of a human cadaver in anterior-posterior orientation. Six measurements were stitched together to form the whole-body image. All radiographs were taken at a three-grating large-object x-ray dark-field scanner, each lasting about 40 s. Signal intensities of different anatomical regions were assessed. The magnitude of visibility reduction caused by beam hardening instead of small-angle scatter was analysed using different phantom materials. Maximal effective dose was 0.3 mSv for the abdomen. RESULTS: Combined attenuation and dark-field radiography are technically possible throughout a whole human body. High signal levels were found in several bony structures, foreign materials, and the lung. Signal levels were 0.25 ± 0.13 (mean ± standard deviation) for the lungs, 0.08 ± 0.06 for the bones, 0.023 ± 0.019 for soft tissue, and 0.30 ± 0.02 for an antibiotic bead chain. We found that phantom materials, which do not produce small-angle scatter, can generate a strong visibility reduction signal. CONCLUSION: We acquired a whole-body x-ray dark-field radiograph of a human body in few minutes with an effective dose in a clinical acceptable range. Our findings suggest that the observed visibility reduction in the bone and metal is dominated by beam hardening and that the true dark-field signal in the lung is therefore much higher than that of the bone.


Asunto(s)
Pulmón , Cadáver , Humanos , Fantasmas de Imagen , Radiografía , Rayos X
19.
Sci Rep ; 10(1): 13195, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764614

RESUMEN

X-ray dark-field (XDF) imaging accesses information on the small-angle scattering properties of the sample. With grating interferometry, the measured scattering signal is related to the sample's autocorrelation function, which was previously demonstrated for simple samples, such as mono-dispersed microspheres for which the autocorrelation function is mathematically given. However, in potential clinical applications of XDF imaging, complex microstructures, such as lung parenchyma are under investigation. Their bahaviour in XDF imaging is not yet known and no mathematical description of the autocorrelation function is derived so far. In this work we demonstrate the previously established correlation of the XDF data of complex sample structures with their autocorrelation function to be impractical. Furthermore, we propose an applicable correlation between XDF and the sample's structural parameter on the basis of mean chord length, a medically-approved measure for alveolar structure, known to be affected by structural lung diseases. Our findings reveal a correlation between energy-dependent XDF imaging and the sample's mean chord length. By that, a connection between a medical measure for alveoli and XDF is achieved, which is particularly important regarding potential future XDF lung imaging applications for the assessment of alveoli size in diagnostic lung imaging.

20.
Eur Radiol Exp ; 3(1): 25, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31292790

RESUMEN

BACKGROUND: Although x-ray dark-field imaging has been intensively investigated for lung imaging in different animal models, there is very limited data about imaging features in the human lungs. Therefore, in this work, a reader study on nine post-mortem human chest x-ray dark-field radiographs was performed to evaluate dark-field signal strength in the lungs, intraobserver and interobserver agreement, and image quality and to correlate with findings of conventional x-ray and CT. METHODS: In this prospective work, chest x-ray dark-field radiography with a tube voltage of 70 kVp was performed post-mortem on nine humans (3 females, 6 males, age range 52-88 years). Visual quantification of dark-field and transmission signals in the lungs was performed by three radiologists. Results were compared to findings on conventional x-rays and 256-slice computed tomography. Image quality was evaluated. For ordinal data, median, range, and dot plots with medians and 95% confidence intervals are presented; intraobserver and interobserver agreement were determined using weighted Cohen κ. RESULTS: Dark-field signal grading showed significant differences between upper and middle (p = 0.004-0.016, readers 1-3) as well as upper and lower zones (p = 0.004-0.016, readers 1-2). Median transmission grading was indifferent between all lung regions. Intraobserver and interobserver agreements were substantial to almost perfect for grading of both dark-field (κ = 0.793-0.971 and κ = 0.828-0.893) and transmission images (κ = 0.790-0.918 and κ = 0.700-0.772). Pulmonary infiltrates correlated with areas of reduced dark-field signal. Image quality was rated good for dark-field images. CONCLUSIONS: Chest x-ray dark-field images provide information of the lungs complementary to conventional x-ray and allow reliable visual quantification of dark-field signal strength.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Correlación de Datos , Diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA