Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(12): 100684, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993102

RESUMEN

Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.


Asunto(s)
Fasciola hepatica , Animales , Humanos , Fasciola hepatica/fisiología , Proteómica , Secretoma , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
Vet Parasitol ; 323: 110049, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37826973

RESUMEN

Our laboratory's vaccine development strategy against the livestock parasite Fasciola hepatica centres around disrupting key biological processes by combining groups of antigens with similar/complementary functional actions into a single vaccine cocktail. In this study the focus was on antioxidant protein vaccines and a protease inhibitor vaccine aimed at disrupting the parasite's ability to defend against oxidative stress and protease-inhibitor balance, respectively. Two combinations of recombinantly expressed antioxidants were assessed, namely peroxiredoxin (rFhPrx), thioredoxin (rFhTrx) and thioredoxin-glutathione reductase (rFhTGR) (Group 1) and rFhPrx, rFhTrx, and two superoxide dismutases (rFhSOD1 and rFhSOD3) (Group 2). The protease inhibitor vaccine cocktail included representatives of each of the key secreted protease inhibitor families, namely a Kunitz-type inhibitor (rFhKT1), a serpin (rFhSrp1) and a stefin, (rFhStf1) (Group 3). The vaccine combinations were formulated in adjuvant Montanide 61VG administered at five timepoints; two before experimental challenge with 60 F. hepatica metacercariae and three after infection. The vaccine combinations did not reduce the liver fluke burden, and only Group 2 displayed a marginal reduction in egg viability (8.2%). Despite previous results showing an effect of liver fluke vaccines on overall weight gain in infected animals, no significant (P value >0.05) impact on weight gain was observed in this study. Antibodies were elicited against all the vaccine antigens within the cocktails and were maintained at high levels to the end of the trial, due to our strategy of continuing vaccine administration after infection. However, these responses were not boosted by the challenge F. hepatica infection. A comparative analysis with previous vaccine data using a protease inhibitor vaccine found no repeat of the promising outcomes associated with this vaccine, indicating that the addition of rFhSrp1 to the vaccine cocktail did not improve vaccine efficacy. Assessment of liver pathology across the two trials using a modified liver enzyme score (glutamate dehydrogenase to platelet ratio) at eight weeks post infection suggests an association with liver fluke burden above 45 flukes, which could be used to predict liver pathology in future trials. The results reported in this study highlight the ambiguousness in liver fluke vaccine development and the difficulty in obtaining consistent and repeatable protection. This work stresses the need for repetition of trials and the use of sufficiently sized groups to assess vaccine efficacy with adequate statistical power.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36290692

RESUMEN

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory-secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host's immune response to benefit its survival.

4.
Epidemiol Infect ; 150: e128, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723031

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Vacunas contra la COVID-19 , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , SARS-CoV-2/genética
5.
J Nat Prod ; 85(5): 1315-1323, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35549259

RESUMEN

Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.


Asunto(s)
Antozoos , COVID-19 , Animales , Antivirales/química , Antivirales/farmacología , Florida , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2
6.
Vaccines (Basel) ; 10(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35214614

RESUMEN

The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.

7.
PLoS Pathog ; 18(1): e1010226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007288

RESUMEN

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fasciola hepatica/inmunología , Proteínas del Helminto/inmunología , Lectina de Unión a Manosa/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Animales , Proteínas del Helminto/metabolismo , Humanos , Inmunidad Innata/inmunología , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Serpinas/inmunología , Serpinas/metabolismo
8.
Animals (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34944270

RESUMEN

Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.

9.
Virulence ; 12(1): 2839-2867, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34696693

RESUMEN

Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite's excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke's survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.


Asunto(s)
Fasciola hepatica , Fasciola , Fascioliasis , Animales , Catepsinas , Fasciola/genética , Fasciola hepatica/genética , Fascioliasis/parasitología , Mamíferos , Virulencia , Zoonosis
10.
Vet Parasitol ; 298: 109517, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34271318

RESUMEN

Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Fasciola hepatica , Fascioliasis , Enfermedades de las Ovejas , Animales , Catepsina L/metabolismo , Ensayo de Inmunoadsorción Enzimática/veterinaria , Fasciola hepatica/inmunología , Fascioliasis/diagnóstico , Fascioliasis/veterinaria , Heces/parasitología , Óvulo , Ovinos , Enfermedades de las Ovejas/diagnóstico
11.
Epidemiol Infect ; 149: e140, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34099081

RESUMEN

The novel coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is the causative agent of the 2020 worldwide coronavirus pandemic. Antibody testing is useful for diagnosing historic infections of a disease in a population. These tests are also a helpful epidemiological tool for predicting how the virus spreads in a community, relating antibody levels to immunity and for assessing herd immunity. In the present study, SARS-CoV-2 viral proteins were recombinantly produced and used to analyse serum from individuals previously exposed, or not, to SARS-CoV-2. The nucleocapsid (Npro) and spike subunit 2 (S2Frag) proteins were identified as highly immunogenic, although responses to the former were generally greater. These two proteins were used to develop two quantitative enzyme-linked immunosorbent assays (ELISAs) that when used in combination resulted in a highly reliable diagnostic test. Npro and S2Frag-ELISAs could detect at least 10% more true positive coronavirus disease-2019 (COVID-19) cases than the commercially available ARCHITECT test (Abbott). Moreover, our quantitative ELISAs also show that specific antibodies to SARS-CoV-2 proteins tend to wane rapidly even in patients who had developed severe disease. As antibody tests complement COVID-19 diagnosis and determine population-level surveillance during this pandemic, the alternative diagnostic we present in this study could play a role in controlling the spread of the virus.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , Persona de Mediana Edad , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación
12.
Front Cell Infect Microbiol ; 11: 667272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026663

RESUMEN

Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis) in humans and their livestock. Infection of the host involves invasion through the intestinal wall followed by migration in the liver that results in extensive damage, before the parasite settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies revealed that increased metabolic stress during the rapid growth and development of F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system. In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx), which then reduces and activates peroxiredoxin (Prx), whose major function is to protect cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and Prx1 far out-weighs (>50-fold) other members of their family, and both are major components of the parasite secretome. While Prx1 possesses a leader signal peptide that directs its secretion through the classical pathway and explains why this enzyme is found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an alternative pathway that packages the majority of this enzyme into extracellular vesicles (EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the parasite's stress-inducible thiol-dependant cascade, but play autonomous roles in defence against the general anti-pathogen oxidative burst by innate immune cells, in the modulation of host immune responses and regulation of inflammation.


Asunto(s)
Fasciola hepatica , Fascioliasis , Animales , Antioxidantes , Humanos , Peroxirredoxinas , Tiorredoxinas
13.
Heliyon ; 6(8): e04778, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32923720

RESUMEN

In November 2015, two iron ore tailing dams collapsed in the city of Mariana, Brazil. The dams' collapse generated a wave of approximately 50 million m3 of a mixture of mining waste and water. It was a major environmental tragedy in Brazilian history, which damaged rivers, and cities 660 km away in the Doce River basin until it reached the ocean coast. Shortly after the incident, several reports informed that the concentration of metals in the water was above acceptable legal limits under Brazilian laws. Here the microbial communities in samples of water, mud, foam, and rhizosphere of Eichhornia from Doce River were analyzed for 16S and 18S rRNA-based amplicon sequencing, along with microbial isolation, chemical and mineralogical analyses. Samples were collected one month and thirteen months after the collapse. Prokaryotic communities from mud shifted drastically over time (33% Bray-Curtis similarity), while water samples were more similar (63% Bray-Curtis similarity) in the same period. After 12 months, mud samples remained with high levels of heavy metals and a reduction in the diversity of microeukaryotes was detected. Amoebozoans increased in mud samples, reaching 49% of microeukaryote abundance, with Discosea and Lobosa groups being the most abundant. The microbial communities' structure in mud samples changed adapting to the new environment condition. The characterization of microbial communities and metal-tolerant organisms from such impacted environments is essential for understanding the ecological consequences of massive anthropogenic impacts and strategies for the restoration of contaminated sites such as the Doce River.

14.
PLoS Negl Trop Dis ; 14(8): e0008510, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760059

RESUMEN

Serine protease inhibitors (serpins) regulate proteolytic events within diverse biological processes, including digestion, coagulation, inflammation and immune responses. The presence of serpins in Fasciola hepatica excretory-secretory products indicates that the parasite exploits these to regulate proteases encountered during its development within vertebrate hosts. Interrogation of the F. hepatica genome identified a multi-gene serpin family of seven members that has expanded by gene duplication and divergence to create an array of inhibitors with distinct specificities. We investigated the molecular properties and functions of two representatives, FhSrp1 and FhSrp2, highly expressed in the invasive newly excysted juvenile (NEJ). Consistent with marked differences in the reactive centre loop (RCL) that executes inhibitor-protease complexing, the two recombinant F. hepatica serpins displayed distinct inhibitory profiles against an array of mammalian serine proteases. In particular, rFhSrp1 efficiently inhibited kallikrein (Ki = 40 nM) whilst rFhSrp2 was a highly potent inhibitor of chymotrypsin (Ki = 0.07 nM). FhSrp1 and FhSrp2 are both expressed on the NEJ surface, predominantly around the oral and ventral suckers, suggesting that these inhibitors protect the parasites from the harmful proteolytic effects of host proteases, such as chymotrypsin, during invasion. Furthermore, the unusual inhibition of kallikrein suggests that rFhSrp1 modulates host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. A vaccine combination of rFhSrp1 and rFhSrp2 formulated in the adjuvant Montanide ISA 206VG elicited modest but non-significant protection against a challenge infection in a rat model, but did induce some protection against liver pathogenesis when compared to a control group and a group vaccinated with two well-studied vaccine candidates, F. hepatica cathepsin L2 and L3. This work highlights the importance of F. hepatica serpins to regulate host responses that enables parasite survival during infection and, coupled with the vaccine data, encourages future vaccine trials in ruminants.


Asunto(s)
Fasciola hepatica/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Secuencia de Aminoácidos , Animales , Fasciola hepatica/genética , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos
15.
Parasit Vectors ; 12(1): 173, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992086

RESUMEN

BACKGROUND: Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life-cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory-secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni. METHODS: To explore the basis of variations in this responsiveness, we investigated the proteome of eggs of S. japonicum. Using mass spectrometry qualitative and quantitative (SWATH) analyses, we describe the protein composition of S. japonicum eggs secretory proteins (ESP), and the differential expression of proteins by fully mature and immature eggs, isolated from faeces and ex vivo adults. RESULTS: Of 957 egg-related proteins identified, 95 were exclusively found in S. japonicum ESP which imply that they are accessible to host immune system effector elements. An in-silico analysis implies that ESP are able of stimulating the innate and adaptive immune system through several different pathways. While quantitative SWATH analysis revealed 124 proteins that are differentially expressed by mature and immature S. japonicum eggs, illuminating some important aspects of eggs biology and infection, we also show that mature eggs are more likely than immature eggs to stimulate host immune responses. CONCLUSIONS: Here we present a list of potential targets that can be used to develop better strategies to avoid severe morbidity during S. japonicum infection, as well as improving diagnosis, treatment and control of schistosomiasis japonica.


Asunto(s)
Proteínas del Huevo/metabolismo , Proteínas del Helminto/metabolismo , Óvulo/metabolismo , Proteoma , Schistosoma japonicum/metabolismo , Animales , Supervivencia Celular , Proteínas del Huevo/genética , Femenino , Perfilación de la Expresión Génica , Proteínas del Helminto/genética , Ratones , Schistosoma japonicum/citología
16.
Adv Parasitol ; 104: 113-164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31030768

RESUMEN

Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.


Asunto(s)
Fasciola/enzimología , Interacciones Huésped-Parásitos/fisiología , Péptido Hidrolasas/metabolismo , Animales , Fasciola/genética , Genoma de los Helmintos/genética , Humanos , Péptido Hidrolasas/química , Péptido Hidrolasas/genética
17.
Exp Parasitol ; 177: 28-34, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28431921

RESUMEN

A diagnostic test that is reliable, sensitive, and applicable in the field is extremely important in epidemiological surveys, during medical treatment for schistosomiasis, and for the control and elimination of schistosomiasis. The Helmintex (HTX) method is based on the use of magnetic beads to trap eggs in a magnetic field. This technique is highly sensitive, but the screening of fecal samples consumes lots of time, thus delaying the results, especially in field studies. The objective of this work was to determine the effects of incorporation of the detergent Tween-20 into the method in an attempt to decrease the final pellet volume produced by the HTX method as well as the use of ninhydrin to stain the Schistosoma mansoni eggs. We showed that these modifications reduced the final volume of the fecal sediment produced in the last step of the HTX method by up to 69% and decreased the screening time to an average of 10.1 min per sample. The use of Tween 20 and ninhydrin led to a high percentage of egg recovery (27.2%). The data obtained herein demonstrate that the addition of detergent and the use of ninhydrin to the HTX process can optimize the screening step and also improve egg recovery, thus justifying the insertion of these steps into the HTX method.


Asunto(s)
Heces/parasitología , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/diagnóstico , Animales , Celulasa/metabolismo , Humanos , Indicadores y Reactivos , Campos Magnéticos , Ratones , Ninhidrina , Óvulo , Recuento de Huevos de Parásitos/métodos , Polisorbatos , Tensoactivos , Factores de Tiempo , Fijación del Tejido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA