Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cytometry A ; 97(4): 363-377, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31774248

RESUMEN

Short half-life proteins regulate many essential processes, including cell cycle, transcription, and apoptosis. However, few well-characterized protein-turnover pathways have been identified because traditional methods to measure protein half-life are time and labor intensive. To overcome this barrier, we developed a protein stability probe and high-content screening pipeline for novel regulators of short half-life proteins using automated image analysis. Our pilot probe consists of the short half-life protein c-MYC (MYC) fused to Venus fluorescent protein (MYC-Venus). This probe enables protein half-life to be scored as a function of fluorescence intensity and distribution. Rapid turnover prevents maximal fluorescence of the probe due to the relatively longer maturation time of the fluorescent protein. Cells expressing the MYC-Venus probe were analyzed using a pipeline in which automated confocal microscopy and image analyses were used to score MYC-Venus stability by two strategies: assaying the percentage of cells with Venus fluorescence above background, and phenotypic comparative analysis. To evaluate this high-content screening pipeline and our probe, a kinase inhibitor library was screened by confocal microscopy to identify known and novel kinases that regulate MYC stability. Compounds identified were shown to increase the half-life of both MYC-Venus and endogenous MYC, validating the probe and pipeline. Fusion of another short half-life protein, myeloid cell leukemia 1 (MCL1), with Venus also demonstrated an increase in percent Venus-positive cells after treatment with inhibitors known to stabilize MCL1. Together, the results validate the use of our automated microscopy and image analysis pipeline of stability probe-expressing cells to rapidly and quantitatively identify regulators of short half-life proteins. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Apoptosis , Proteínas , Humanos , Microscopía Confocal , Microscopía Fluorescente , Estabilidad Proteica
2.
Dis Model Mech ; 12(7)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350286

RESUMEN

The potent MYC oncoprotein is deregulated in many human cancers, including breast carcinoma, and is associated with aggressive disease. To understand the mechanisms and vulnerabilities of MYC-driven breast cancer, we have generated an in vivo model that mimics human disease in response to MYC deregulation. MCF10A cells ectopically expressing a common breast cancer mutation in the phosphoinositide 3 kinase pathway (PIK3CAH1047R) led to the development of organised acinar structures in mice. Expressing both PIK3CAH1047R and deregulated MYC led to the development of invasive ductal carcinoma. Therefore, the deregulation of MYC expression in this setting creates a MYC-dependent normal-to-tumour switch that can be measured in vivo These MYC-driven tumours exhibit classic hallmarks of human breast cancer at both the pathological and molecular level. Moreover, tumour growth is dependent upon sustained deregulated MYC expression, further demonstrating addiction to this potent oncogene and regulator of gene transcription. We therefore provide a MYC-dependent model of breast cancer, which can be used to assay invivo tumour signalling pathways, proliferation and transformation from normal breast acini to invasive breast carcinoma. We anticipate that this novel MYC-driven transformation model will be a useful research tool to better understand the oncogenic function of MYC and for the identification of therapeutic vulnerabilities.


Asunto(s)
Neoplasias de la Mama/patología , Mama/metabolismo , Genes myc , Modelos Biológicos , Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
3.
Nat Commun ; 9(1): 3502, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158517

RESUMEN

The c-MYC (MYC) oncoprotein is deregulated in over 50% of cancers, yet regulatory mechanisms controlling MYC remain unclear. To this end, we interrogated the MYC interactome using BioID mass spectrometry (MS) and identified PP1 (protein phosphatase 1) and its regulatory subunit PNUTS (protein phosphatase-1 nuclear-targeting subunit) as MYC interactors. We demonstrate that endogenous MYC and PNUTS interact across multiple cell types and that they co-occupy MYC target gene promoters. Inhibiting PP1 by RNAi or pharmacological inhibition results in MYC hyperphosphorylation at multiple serine and threonine residues, leading to a decrease in MYC protein levels due to proteasomal degradation through the canonical SCFFBXW7 pathway. MYC hyperphosphorylation can be rescued specifically with exogenous PP1, but not other phosphatases. Hyperphosphorylated MYC retained interaction with its transcriptional partner MAX, but binding to chromatin is significantly compromised. Our work demonstrates that PP1/PNUTS stabilizes chromatin-bound MYC in proliferating cells.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Electroforesis en Gel Bidimensional , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Proteínas Nucleares/genética , Proteína Fosfatasa 1/genética , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de Unión al ARN/genética
4.
Transl Oncol ; 11(4): 1012-1022, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29966864

RESUMEN

Butyrylcholinesterase (BChE) is a plasma enzyme that hydrolyzes ghrelin and bioactive esters, suggesting a role in modulating metabolism. Serum BChE is reduced in cancer patients. In prostate cancer (PC), the down-regulation is associated with disease recurrence. Nonetheless, how BChE is expressed in PC and its impact on PC remain unclear. We report here the biphasic changes of BChE expression in PC. In vitro, BChE expression was decreased in more tumorigenic PC stem-like cells (PCSLCs), DU145, and PC3 cells compared to less tumorigenic non-stem PCs and LNCaP cells. On the other hand, BChE was expressed at a higher level in LNCaP cells than immortalized but non-tumorigenic prostate epithelial BPH-1 cells. In vivo, BChE expression was up-regulated in DU145 xenografts compared to LNCaP xenografts; DU145 cell-derived lung metastases displayed comparable levels of BChE as subcutaneous tumors. Furthermore, LNCaP xenografts produced in castrated mice exhibited a significant increase of BChE expression compared to xenografts generated in intact mice. In patients, BChE expression was down-regulated in PCs (n = 340) compared to prostate tissues (n = 86). In two independent PC populations MSKCC (n = 130) and TCGA Provisional (n = 490), BChE mRNA levels were reduced from World Health Organization grade group 1 (WHOGG 1) PCs to WHOGG 3 PCs, followed by a significant increase in WHOGG 5 PCs. The up-regulation was associated with a reduction in disease-free survival (P = .008). Collectively, we demonstrated for the first time a biphasic alteration of BChE, its down-regulation at early stage of PC and its up-regulation at advanced PC.

5.
Genes (Basel) ; 8(6)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28587062

RESUMEN

MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.

6.
Oncotarget ; 8(12): 19218-19235, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28186973

RESUMEN

Although the FAM84B gene lies within chromosome 8q24, a locus frequently altered in prostate cancer (PC), its alteration during prostate tumorigenesis has not been well studied. We report here FAM84B upregulation in DU145 cell-derived prostate cancer stem-like cells (PCSLCs) and DU145 cell-produced lung metastases compared to subcutaneous xenograft tumors. FAM84B protein was detected in bone metastases and primary PCs. Nanostring examination of 7 pairs of tumor adjacent normal and PC tissues revealed elevations in FAM84B mRNA levels in all carcinomas. Furthermore, through analysis of FAM84B expression using large datasets within the Gene Expression Omnibus and OncomineTM database, we demonstrate significant increases in FAM84B mRNA in 343 primary PCs versus 181 normal tissues, and elevations in the FAM84B gene copy number (GCN) in 171 primary PCs versus 61 normal tissues. While FAM84B was not detected at higher levels via immunohistochemistry in high grade (Gleason score/GS 8-10) tumors compared to GS6-7 PCs, analyses of FAM84B mRNA and GCN using datasets within the cBioPortal database demonstrated FAM84B upregulation in 12% (67/549) of primary PCs and 18% (73/412) of metastatic castration resistant PCs (mCRPCs), and GCN increases in 4.8% (26/546) of primary PCs and 26% (121/467) of mCRPCs, revealing an association of the aforementioned changes with CRPC development. Of note, an increase in FAM84B expression was observed in xenograft CRPCs produced by LNCaP cells. Furthermore, FAM84B upregulation and GCN increases correlate with decreases in disease free survival and overall survival. Collectively, we demonstrate a novel association of FAM84B with PC tumorigenesis and CRPC progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/secundario , Transformación Celular Neoplásica/patología , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Humanos , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos NOD , Ratones SCID , Clasificación del Tumor , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Data Brief ; 6: 811-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26937452

RESUMEN

We have recently reported that CYB5D2 plays a role in suppression of cervical cancer tumorigenesis, "CYB5D2 displays tumor suppression activities towards cervical cancer" [1]. We provide the accompany data here describing the effects of CYB5D2 overexpression and addition of recombinant CYB5D2 on HeLa cell cycle distribution. Furthermore, we will present the conditions used to specifically determine CYB5D2 expression in primary cervical and cervical cancer tissues using immunohistochemistry (IHC) and the patient cohort involved in assessing the CYB5D2 protein levels in primary cervical and cervical cancer tissues.

8.
Cancer Res ; 76(6): 1603-14, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26795349

RESUMEN

Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.


Asunto(s)
Adhesión Celular/genética , Contactina 1/genética , Metástasis de la Neoplasia/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Neoplasias Óseas/genética , Cadherinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/patología , Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transcriptoma/genética
9.
Biochim Biophys Acta ; 1862(4): 556-565, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26692170

RESUMEN

Cervical cancer is caused by infections with human papillomaviruses (HPV) and genetic alternations in the cervical epithelium. While the former is well studied, the latter remains unclear. We report here that CYB5D2/Neuferricin possesses tumor suppressing activity towards cervical tumorigenesis. Ectopic expression of CYB5D2 did not affect HeLa cell proliferation and the cell's ability to form xenograft tumors, but significantly inhibited HeLa cell invasion in vitro and the cell-produced lung metastasis in NOD/SCID mice. Knockdown of CYB5D2 enhanced HeLa cell invasion. Two mutations in CYB5D2, the substitutions of arginine (R) 7 with either proline (P) or glycine (G), were reported in colon cancer. Both CYB5D2(R7P) and CYB5D2(R7G) were incapable of inhibiting HeLa cell invasion. CYB5D2 binds heme, in which aspartate (D) 86 is required. While CYB5D2(D86G) is heme-binding defective, it inhibited HeLa cell invasion. On the other hand, CYB5D2(R7P) and CYB5D2(R7G) bound heme but did not inhibit HeLa cell invasion. Collectively, CYB5D2 inhibits HeLa cell invasion independently of its heme binding. Furthermore, immunohistochemistry examination of CYB5D2 expression in 20 normal cervical tissues and 40 cervical squamous cell carcinomas (SCC) revealed a CYB5D2 reduction in 87.5% (35/40) of SCC. Analysis of CYB5D2 gene expression and genomic alteration data available from Oncomeine™ detected significant reductions of CYB5D2 mRNA in 40 SCCs and CYB5D2 gene copy number in 107 SCCs. Collectively, we provide evidence that CYB5D2 is a candidate tumor suppressor of cervical tumorigenesis.


Asunto(s)
Citocromos b5/biosíntesis , Regulación Neoplásica de la Expresión Génica , Proteínas Supresoras de Tumor/biosíntesis , Neoplasias del Cuello Uterino/enzimología , Animales , Citocromos b5/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Invasividad Neoplásica , Proteínas Supresoras de Tumor/genética , Neoplasias del Cuello Uterino/genética
10.
PLoS One ; 10(5): e0127546, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992689

RESUMEN

SIPL1 (Sharpin) or Sharpin plays a role in tumorigenesis. However, its involvement in breast cancer tumorigenesis remains largely unknown. To investigate this issue, we have systemically analyzed SIPL1 gene amplification and expression data available from Oncomine datasets, which were derived from 17 studies and contained approximately 20,000 genes, 3438 breast cancer cases, and 228 normal individuals. We found a SIPL1 gene amplification in invasive ductal breast cancers compared to normal breast tissues and a significant elevation of SIPL1 mRNA in breast cancers in comparison to non-tumor breast tissues. These results collectively reveal that increases in SIPL1 expression occur during breast cancer tumorigenesis. To further investigate this association, we observed increases in the SIPL1 gene and mRNA in the breast cancer subtypes of estrogen receptor (ER)+, progesterone receptor (PR)+, HER2+, or triple negative. Additionally, a gain of the SIPL1 gene correlated with breast cancer grade and the levels of SIPL1 mRNA associated with both breast cancer stages and grades. Elevation of SIPL1 gene copy and mRNA is linked to a decrease in patient survival, especially for those with PR+, ER+, or HER2- breast cancers. These results are supported by our analysis of SIPL1 protein expression using a tissue microarray containing 224 breast cancer cases, in which higher levels of SIPL1 relate to ER+ and PR+ tumors and AKT activation. Furthermore, we were able to show that progesterone significantly reduced SIPL1 mRNA and protein expression in MCF7 cells. As progesterone enhances breast cancer tumorigenesis in a context dependent manner, inhibition of SIPL1 expression may contribute to progesterone's non-tumorigenic function which might be countered by SIPL1 upregulation. Taken together, we demonstrate a positive correlation of SIPL1 with BC tumorigenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ubiquitinas/metabolismo , Neoplasias de la Mama/epidemiología , Progresión de la Enfermedad , Femenino , Amplificación de Genes , Humanos , Células MCF-7 , ARN Mensajero/genética , Factores de Riesgo , Tasa de Supervivencia , Ubiquitinas/genética , Regulación hacia Arriba
11.
Oncotarget ; 5(17): 7406-19, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25277181

RESUMEN

Despite the recent progress in our understanding of clear cell renal cell carcinomas (ccRCCs), the etiology of ccRCC remains unclear. We reported here a prevailing reduction of the raf kinase inhibitory protein (RKIP) in ccRCC. In our examination of more than 600 ccRCC patients by western blot and immunohistochemistry, RKIP was significantly reduced in 80% of tumors. Inhibition of RKIP transcription in ccRCC occurs to greater levels than VHL transcription based on the quantification analysis of their transcripts in six large datasets of DNA microarray available in Oncomine™ with the median rank of suppression being 582 and 2343 for RKIP and VHL, respectively. Collectively, the magnitude of RKIP reduction and the levels of its downregulation match those of VHL. Furthermore, RKIP displays tumor suppressing activity in ccRCC. While modulation of RKIP expression did not affect the proliferation of A498 and 786-0 ccRCC cells and neither their ability to form xenograft tumors in NOD/SCID mice, ectopic expression or knockdown of RKIP inhibited or enhanced A498 and 786-0 ccRCC cell invasion, respectively. This was associated with robust changes in vimentin expression, a marker of EMT. Taken together, we demonstrate here that downregulation of RKIP occurs frequently at a rate that reaches that of VHL, suggesting RKIP being a critical tumor suppressor for ccRCC. This is consistent with RKIP being a tumor suppressor for other cancers.


Asunto(s)
Carcinoma de Células Renales/enzimología , Neoplasias Renales/enzimología , Proteínas de Unión a Fosfatidiletanolamina/biosíntesis , Animales , Western Blotting , Genes Supresores de Tumor , Xenoinjertos , Humanos , Inmunohistoquímica , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Cell Signal ; 26(12): 2749-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25152374

RESUMEN

PTEN is post-translationally modified by ubiquitin via association with multiple E3 ubiquitin ligases, including NEDD4-1, XIAP, and WWP2. Despite the rapid progress made in researching the impact of ubiquitination on PTEN function, our understanding remains fragmented. Building on the previously observed interaction between SIPL1 and PTEN, we report here that SIPL1 promotes PTEN polyubiquitination via lysine 48 (K48)-independent polyubiquitin chains. Substitution of the K48 residue of ubiquitin with arginine (R) enhanced SIPL1-mediated PTEN polyubiquitination. In contrast, the K63R substitution significantly reduced it. The ubiquitin-like (UBL) domain is required for SIPL1-induced PTEN polyubiquitination. This post-translational modification promoted the association of SIPL1 with PTEN. Elevated amounts of the SIPL1/PTEN complex were precipitated in 293T cells co-transfected with PTEN, SIPL1, and ubiquitin compared to cells co-transfected with SIPL1 and PTEN only. Additionally, formation of the SIPL1/PTEN complex was inhibited when either lysine-less (K0) ubiquitin or K63R ubiquitin was co-transfected together with SIPL1+PTEN. The PTEN component in the SIPL1/PTEN complex contained polyubiquitin chains. The ubiquitination reaction may play a structural role, stabilizing the SIPL1/PTEN complex, as a ubiquitin binding-defective SIPL1 mutant (TFLV) is proficient in PTEN association. Collectively, we demonstrate that SIPL1 binds PTEN and enhances PTEN polyubiquitination which in turn promotes the interaction between SIPL1 and PTEN.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Ubiquitinación/fisiología , Ubiquitinas/metabolismo , Arginina/metabolismo , Línea Celular , Células HEK293 , Humanos , Lisina/metabolismo , Poliubiquitina/metabolismo , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína , Transfección/métodos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Int J Mol Med ; 34(3): 835-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25018115

RESUMEN

The PTEN tumour suppressor plays critical roles in inhibiting cell proliferation, adhesion and migration through downregulation of the PI3K-AKT pathway. SIPL1 is a novel PTEN­negative regulator (PTEN-NR) that contributes to PTEN inactivation during tumorigenesis. However, whether SIPL1 plays a role in inhibiting PTEN function in the process of cell adhesion and migration remains unclear. The aim of this study was to investigate this possibility using CHO-K1 cells, and western blotting, qPCR analyses and microscopy. Results showed that the overexpression of SIPL1 in CHO-K1 cells decreased the amount of PTEN protein. The downregulation was not caused by an obvious reduction in PTEN mRNA levels or ubiquitin-dependent protein degradation. Nonetheless, the reduction was functional, as SIPL1 overexpression increased the activation of AKT under serum­starved conditions, promoting CHO-K1 cell proliferation in an AKT­dependent manner. Furthermore, SIPL1 increased the migration and attachment of CHO-K1 cells. Taken together, the evidence suggested that SIPL1 promotes AKT activation by decreasing the amount of PTEN protein in CHO-K1 cells, thereby promoting cell proliferation and migration.


Asunto(s)
Movimiento Celular , Fosfohidrolasa PTEN/antagonistas & inhibidores , Ubiquitinas/metabolismo , Animales , Células CHO , Adhesión Celular , Proliferación Celular , Cricetinae , Cricetulus , Activación Enzimática , Células HEK293 , Humanos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Cancer Invest ; 32(7): 330-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24884829

RESUMEN

Pyruvate kinase M2 (PKM2) is essential for aerobic glycolysis, the dominant metabolic pathway utilized by cancer cells. To determine the association of PKM2 with prostate cancer (PC), we examined 29 primary PC and three lymph node metastatic tumors; elevation of PKM2 was observed in Gleason 8-10 tumors compared to Gleason 6-7 carcinomas. High PKM2 was detected by immunohistochemistry in more aggressive xenograft tumors derived from PC stem-like cells (PCSCs) compared to those produced from non-PCSCs. While PCSCs and non-PCSCs expressed comparable levels of PKM2, distinct posttranslational modifications were observed. Collectively, upregulation and specific modification to PKM2 associate with PC progression.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Neoplasias de la Próstata/patología , Hormonas Tiroideas/genética , Anciano , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular , Predisposición Genética a la Enfermedad , Glucólisis/genética , Humanos , Metástasis Linfática , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Clasificación del Tumor , Trasplante de Neoplasias , Neoplasias de la Próstata/genética , Procesamiento Proteico-Postraduccional , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
15.
Int J Cell Biol ; 2013: 242513, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23476652

RESUMEN

Aerobic glycolysis is the dominant metabolic pathway utilized by cancer cells, owing to its ability to divert glucose metabolites from ATP production towards the synthesis of cellular building blocks (nucleotides, amino acids, and lipids) to meet the demands of proliferation. The M2 isoform of pyruvate kinase (PKM2) catalyzes the final and also a rate-limiting reaction in the glycolytic pathway. In the PK family, PKM2 is subjected to a complex regulation by both oncogenes and tumour suppressors, which allows for a fine-tone regulation of PKM2 activity. The less active form of PKM2 drives glucose through the route of aerobic glycolysis, while active PKM2 directs glucose towards oxidative metabolism. Additionally, PKM2 possesses protein tyrosine kinase activity and plays a role in modulating gene expression and thereby contributing to tumorigenesis. We will discuss our current understanding of PKM2's regulation and its many contributions to tumorigenesis.

16.
Mol Cancer ; 8: 98, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19903340

RESUMEN

BACKGROUND: PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by dephosphorylating phosphatidylinositol (3,4,5)-triphosphate (PIP3) to phosphatidylinositol (4,5)-biphosphate (PIP2), thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K)-mediated tumorigenic activities. Consistent with this model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to nuclear PTEN-mediated tumor suppression. The nuclear protein BMI1 promotes stem cell self-renewal and tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI1 function. RESULTS: We investigated whether PTEN inhibits BMI1 function during prostate tumorigenesis. PTEN binds to BMI1 exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN mutants, PTEN/C124S (CS), PTEN/G129E (GE), and a C-terminal PTEN fragment (C-PTEN) excluding the catalytic domain, all associate with BMI1. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMI1. This interaction reduces BMI1's function. BMI1 enhances hTERT activity and reduces p16(INK4A) and p14(ARF) expression. These effects were attenuated by PTEN, PTEN(CS), PTEN(GE), and C-PTEN. Furthermore, knockdown of PTEN in DU145 cells increased hTERT promoter activity, which was reversed when BMI1 was concomitantly knocked-down, indicating that PTEN reduces hTERT promoter activity via inhibiting BMI1 function. Conversely, BMI1 reduces PTEN's ability to inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to dephosphorylate membrane-bound PIP3. Furthermore, BMI1 appears to co-localize with PTEN more frequently in clinical prostate tissue samples from patients diagnosed with PIN (prostatic intraepithelial neoplasia) and carcinoma compared to normal prostate epithelium. While PTEN co-localized with BMI1 in 2.4% of normal prostate epithelial cells, co-localization was observed in 37.6% and 18.5% of cells in PIN and carcinoma, respectively. Collectively, we demonstrate that PTEN inhibits BMI1 function via binding to BMI1 in a phosphatase independent manner. CONCLUSION: We demonstrate that nuclear PTEN reduces BMI1 function independently of its phosphatase activity. It was recently observed that nuclear PTEN also suppresses tumorigenesis. Our results, therefore, provide a plausible mechanism by which nuclear PTEN prevents tumorigenesis.


Asunto(s)
Proteínas Nucleares/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Aminoácidos , Línea Celular Tumoral , Núcleo Celular/enzimología , Activación Enzimática , Humanos , Masculino , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo Represivo Polycomb 1 , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...