Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Neurochem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976626

RESUMEN

DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.

2.
Methods Cell Biol ; 188: 171-181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880523

RESUMEN

Alterations in motor development often accompany neurodevelopmental disorders (NDD) and can have an impact on social interaction and communication. Studying motor development and function in mouse models of NDDs can offer a window to identify underlying biological mechanisms and establish preclinical outcome measures for testing therapeutics. This chapter describes tests to measure motor developmental milestones early postnatally and adult motor functions in mouse models of NDDs.


Asunto(s)
Modelos Animales de Enfermedad , Trastornos del Neurodesarrollo , Animales , Trastornos del Neurodesarrollo/fisiopatología , Trastornos del Neurodesarrollo/patología , Ratones , Actividad Motora , Humanos
3.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995687

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión Génica
4.
Nat Commun ; 14(1): 6025, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758766

RESUMEN

Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.


Asunto(s)
Proteínas CELF , Neocórtex , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Neocórtex/metabolismo , Neuronas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo
5.
Genet Med ; 25(11): 100922, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37403762

RESUMEN

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Animales , Humanos , Ratas , Trastorno del Espectro Autista/genética , Epilepsia/genética , Mutación Missense/genética , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Rabfilina-3A
6.
Eur J Hum Genet ; 31(11): 1228-1236, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36879111

RESUMEN

Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.


Asunto(s)
Genes Ligados a X , Inactivación del Cromosoma X , Femenino , Humanos , Masculino , Madres , Alelos , Cromosomas , Cromosomas Humanos X/genética , Proteínas de Neoplasias/genética
7.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36996810

RESUMEN

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Actinas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Espinas Dendríticas/metabolismo , Mamíferos/metabolismo
8.
Brain ; 146(2): 534-548, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35979925

RESUMEN

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Trastornos del Desarrollo del Lenguaje , Trastornos del Neurodesarrollo , Animales , Ratones , Humanos , Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
10.
Nature ; 606(7916): 945-952, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732742

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.


Asunto(s)
Esclerosis Amiotrófica Lateral , Linfocitos T CD8-positivos , Células Clonales , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Células Clonales/patología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Técnicas de Sustitución del Gen , Ratones , Neuronas Motoras/patología , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , ARN Helicasas/genética , ARN Helicasas/metabolismo
11.
Eur J Hum Genet ; 30(8): 938-945, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35322241

RESUMEN

Intellectual disability (ID), a neurodevelopmental disorder affecting 1-3% of the general population, is characterized by limitations in both intellectual function and adaptive skills. The high number of conditions associated with ID underlines its heterogeneous origin and reveals the difficulty of obtaining a rapid and accurate genetic diagnosis. However, the Next Generation Sequencing, and the whole exome sequencing (WES) in particular, has boosted the diagnosis rate associated with ID. In this study, WES performed on 244 trios of patients clinically diagnosed with isolated or syndromic ID and their respective unaffected parents has allowed the identification of the underlying genetic basis of ID in 64 patients, yielding a diagnosis rate of 25.2%. Our results suggest that trio-based WES facilitates ID's genetic diagnosis, particularly in patients who have been extensively waiting for a definitive molecular diagnosis. Moreover, genotypic information from parents provided by trio-based WES enabled the detection of a high percentage (61.5%) of de novo variants inside our cohort. Establishing a quick genetic diagnosis of ID would allow early intervention and better clinical management, thus improving the quality of life of these patients and their families.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Exoma , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Calidad de Vida , Secuenciación del Exoma
12.
Front Chem ; 10: 1059593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700074

RESUMEN

The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants.

13.
J Med Genet ; 59(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323470

RESUMEN

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Linaje , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Secuenciación del Exoma , Adulto Joven
14.
Mol Autism ; 12(1): 66, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615521

RESUMEN

BACKGROUND: Genetic studies have implicated rare and common variations in liability for autism spectrum disorder (ASD). Of the discovered risk variants, those rare in the population invariably have large impact on liability, while common variants have small effects. Yet, collectively, common risk variants account for the majority of population-level variability. How these rare and common risk variants jointly affect liability for individuals requires further study. METHODS: To explore how common and rare variants jointly affect liability, we assessed two cohorts of ASD families characterized for rare and common genetic variations (Simons Simplex Collection and Population-Based Autism Genetics and Environment Study). We analyzed data from 3011 affected subjects, as well as two cohorts of unaffected individuals characterized for common genetic variation: 3011 subjects matched for ancestry to ASD subjects and 11,950 subjects for estimating allele frequencies. We used genetic scores, which assessed the relative burden of common genetic variation affecting risk of ASD (henceforth "burden"), and determined how this burden was distributed among three subpopulations: ASD subjects who carry a potentially damaging variant implicated in risk of ASD ("PDV carriers"); ASD subjects who do not ("non-carriers"); and unaffected subjects who are assumed to be non-carriers. RESULTS: Burden harbored by ASD subjects is stochastically greater than that harbored by control subjects. For PDV carriers, their average burden is intermediate between non-carrier ASD and control subjects. Both carrier and non-carrier ASD subjects have greater burden, on average, than control subjects. The effects of common and rare variants likely combine additively to determine individual-level liability. LIMITATIONS: Only 305 ASD subjects were known PDV carriers. This relatively small subpopulation limits this study to characterizing general patterns of burden, as opposed to effects of specific PDVs or genes. Also, a small fraction of subjects that are categorized as non-carriers could be PDV carriers. CONCLUSIONS: Liability arising from common and rare risk variations likely combines additively to determine risk of any individual diagnosed with ASD. On average, ASD subjects carry a substantial burden of common risk variation, even if they also carry a rare PDV affecting risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Humanos
15.
Mol Autism ; 12(1): 65, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615535

RESUMEN

BACKGROUND: The Autism Sequencing Consortium identified 102 high-confidence autism spectrum disorder (ASD) genes, showing that individuals with ASD and with potentially damaging single nucleotide variation (pdSNV) in these genes had lower cognitive levels and delayed age at walking, when compared to ASD participants without pdSNV. Here, we made use of a Swedish sample of individuals with ASD (called PAGES, for Population-Based Autism Genetics & Environment Study) to evaluate the frequency of pdSNV and their impact on medical and psychiatric phenotypes, using an epidemiological frame and universal health reporting. We then combine findings with those for potentially damaging copy number variation (pdCNV). METHODS: SNV and CNV calls were generated from whole-exome sequencing and chromosome microarray data, respectively. Birth and medical register data were used to collect phenotypes. RESULTS: Of 808 individuals assessed by sequencing, 69 (9%) had pdSNV in the 102 ASC genes, and 144 (18%) had pdSNV in the 102 ASC genes or in a larger set of curated neurodevelopmental genes (from the Deciphering Developmental Disorders study, the gene2phenotype database, and the Radboud University gene lists). Three or more individuals had pdSNV in GRIN2B, POGZ, SATB1, DYNC1H1, SCN8A, or CREBBP. In comparison, out of the 996 individuals from whom CNV were called, 105 (11%) carried one or more pdCNV, including four or more individuals with CNV in the recurrent 15q11q13, 22q11.2, and 16p11.2 loci. Carriers of pdSNV were more likely to have intellectual disability (ID) and epilepsy, while carriers of pdCNV showed increased rates of congenital anomalies and scholastic skill disorders. Carriers of either pdSNV or pdCNV were more likely to have ID, scholastic skill disorders, and epilepsy. LIMITATIONS: The cohort only included individuals with autistic disorder, the more severe form of ASD, and phenotypes are defined from medical registers. Not all genes studied are definitively ASD genes, and we did not have de novo information to aid in classification. CONCLUSIONS: In this epidemiological sample, rare pdSNV were more common than pdCNV and the combined yield of potentially damaging variation was substantial at 27%. The results provide compelling rationale for the use of high-throughout sequencing as part of routine clinical workup for ASD and support the development of precision medicine in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas de Unión a la Región de Fijación a la Matriz , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Fenotipo , Prevalencia , Transposasas/genética
16.
Biol Psychiatry ; 90(11): 742-755, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34344536

RESUMEN

BACKGROUND: Mutations in the X-linked gene DDX3X account for approximately 2% of intellectual disability in females, often comorbid with behavioral problems, motor deficits, and brain malformations. DDX3X encodes an RNA helicase with emerging functions in corticogenesis and synaptogenesis. METHODS: We generated a Ddx3x haploinsufficient mouse (Ddx3x+/- females) with construct validity for DDX3X loss-of-function mutations. We used standardized batteries to assess developmental milestones and adult behaviors, as well as magnetic resonance imaging and immunostaining of cortical projection neurons to capture early postnatal changes in brain development. RESULTS: Ddx3x+/- females showed physical, sensory, and motor delays that evolved into behavioral anomalies in adulthood, including hyperactivity, anxiety-like behaviors, cognitive impairments in specific tasks (e.g., contextual fear memory but not novel object recognition memory), and motor deficits. Motor function declined with age but not if mice were previously exposed to behavioral training. Developmental and behavioral changes were associated with a reduction in brain volume, with some regions (e.g., cortex and amygdala) disproportionally affected. Cortical thinning was accompanied by defective cortical lamination, indicating that Ddx3x regulates the balance of glutamatergic neurons in the developing cortex. CONCLUSIONS: These data shed new light on the developmental mechanisms driving DDX3X syndrome and support construct and face validity of this novel preclinical mouse model.


Asunto(s)
Discapacidad Intelectual , Animales , ARN Helicasas DEAD-box/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Neurogénesis , Fenotipo , Síndrome
17.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199759

RESUMEN

The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.


Asunto(s)
Alelos , Discapacidad Intelectual/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Canales de Potasio/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcineurina/metabolismo , Femenino , Genoma Humano , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ionomicina/farmacología , Masculino , Linaje , Canales de Potasio/química , Hermanos , Xenopus laevis/metabolismo , Adulto Joven
18.
Mol Autism ; 12(1): 36, 2021 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-33993884

RESUMEN

BACKGROUND: DDX3X syndrome is a recently identified genetic disorder that accounts for 1-3% of cases of unexplained developmental delay and/or intellectual disability (ID) in females, and is associated with motor and language delays, and autism spectrum disorder (ASD). To date, the published phenotypic characterization of this syndrome has primarily relied on medical record review; in addition, the behavioral dimensions of the syndrome have not been fully explored. METHODS: We carried out multi-day, prospective, detailed phenotyping of DDX3X syndrome in 14 females and 1 male, focusing on behavioral, psychological, and neurological measures. Three participants in this cohort were previously reported with limited phenotype information and were re-evaluated for this study. We compared results against population norms and contrasted phenotypes between individuals harboring either (1) protein-truncating variants or (2) missense variants or in-frame deletions. RESULTS: Eighty percent (80%) of individuals met criteria for ID, 60% for ASD and 53% for attention-deficit/hyperactivity disorder (ADHD). Motor and language delays were common as were sensory processing abnormalities. The cohort included 5 missense, 3 intronic/splice-site, 2 nonsense, 2 frameshift, 2 in-frame deletions, and one initiation codon variant. Genotype-phenotype correlations indicated that, on average, missense variants/in-frame deletions were associated with more severe language, motor, and adaptive deficits in comparison to protein-truncating variants. LIMITATIONS: Sample size is modest, however, DDX3X syndrome is a rare and underdiagnosed disorder. CONCLUSION: This study, representing a first, prospective, detailed characterization of DDX3X syndrome, extends our understanding of the neurobehavioral phenotype. Gold-standard diagnostic approaches demonstrated high rates of ID, ASD, and ADHD. In addition, sensory deficits were observed to be a key part of the syndrome. Even with a modest sample, we observe evidence for genotype-phenotype correlations with missense variants/in-frame deletions generally associated with more severe phenotypes.


Asunto(s)
Trastorno del Espectro Autista , ARN Helicasas DEAD-box/genética , Trastornos del Desarrollo del Lenguaje , Femenino , Humanos , Masculino , Estudios Prospectivos
19.
Genes (Basel) ; 12(3)2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673501

RESUMEN

Background: Activity dependent neuroprotective protein (ADNP) syndrome is one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability, however, the phenotypes remain poorly described. Here we examine the sensory reactivity phenotype in children and adolescents with ADNP syndrome. Methods: Twenty-two individuals with ADNP syndrome received comprehensive clinical evaluations including standardized observations, caregiver interviews, and questionnaires to assess sensory reactivity symptoms. Relationships between sensory symptoms and age, sex, ASD, IQ, and adaptive behavior were examined. Genotype-phenotype correlations with the recurrent p.Tyr719* variant were also explored. Results: Sensory reactivity symptoms were observed and reported in all participants. A syndrome-specific phenotype was identified, characterized by high levels of sensory seeking across tactile, auditory, and visual domains. Tactile hyporeactivity, characterized by pain insensitivity, was reported in the majority of participants. Sensory symptoms were identified across individuals regardless of age, sex, IQ, adaptive ability, genetic variant, and most importantly, ASD status. No significant differences were identified between participants with and without the recurrent p.Tyr719* variant on any sensory measure. Conclusions: Sensory reactivity symptoms are a common clinical feature of ADNP syndrome. Quantifying sensory reactivity using existing standardized measures will enhance understanding of sensory reactivity in individuals with ADNP syndrome and will aid in clinical care. The sensory domain may also represent a promising target for treatment in clinical trials.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Adolescente , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/terapia , Niño , Preescolar , Femenino , Humanos , Discapacidad Intelectual/fisiopatología , Discapacidad Intelectual/terapia , Masculino , Síndrome
20.
Am J Med Genet A ; 185(6): 1712-1720, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675273

RESUMEN

De novo variants in the WDR26 gene leading to haploinsufficiency have recently been associated with Skraban-Deardorff syndrome. This condition is an ultra-rare autosomal dominant neurodevelopmental disorder characterized by a broad range of clinical signs, including intellectual disability (ID), developmental delay (DD), seizures, abnormal facial features, feeding difficulties, and minor skeletal anomalies. Currently, 18 cases have been reported in the literature and for only 15 of them a clinical description is available. Here, we describe a child with Skraban-Deardorff syndrome associated with the WDR26 pathogenic de novo variant NM_025160.6:c.69dupC, p.(Gly24ArgfsTer48), and an adult associated with the pathogenic de novo variant c.1076G > A, p.(Trp359Ter). The adult patient was a 29-year-old female with detailed information on clinical history and pharmacological treatments since birth, providing an opportunity to map disease progression and patient management. By comparing our cases with published reports of Skraban-Deardorff syndrome, we provide a genetic and clinical summary of this ultrarare condition, describe the clinical management from childhood to adult age, and further expand on the clinical phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adulto , Niño , Preescolar , Deleción Cromosómica , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...