Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992895

RESUMEN

The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.


Asunto(s)
Ciclo Celular/efectos de la radiación , Dermis/efectos de la radiación , Fibroblastos/efectos de la radiación , Expresión Génica/efectos de la radiación , Ondas de Radio/efectos adversos , Anciano , Células Cultivadas , Dermis/citología , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Health Phys ; 119(1): 59-63, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371852

RESUMEN

The NATO HFM 291 research task group (RTG) on "Ionizing Radiation Bioeffects and Countermeasures" represents a group of scientists from military and civilian academic and scientific institutions primarily working in the field of radiobiology. Among other tasks, the RTG intends to extend their work on risk estimation and communication to bridge the gap in appropriate judgment of health risks given a certain radiation exposure. The group has no explicit psychological background but an expertise in radiobiology and risk assessment. The group believes that, as one of the essential first steps in risk communication, it is required to put radiation risk into perspective. Radiation risk requires a weight in comparison to already-known risks. What we envision is to Compare Radiation exposure-associated health Risks (CRRis App) with daily life health risks caused by other common exposures such as cigarette smoking, driving a car, etc. Within this paper, we provide (1) an overview of health risks after radiation exposure, (2) an explanation of the task and concept of an envisioned CRRis App, (3) an overview of existing software tools related to this issue, (4) a summary of inputs and discussions with experts in the field of radiation protection and risk communication during the ConRad conference, and finally, (5) identification of the next steps in the development of the App.


Asunto(s)
Aplicaciones Móviles , Exposición a la Radiación/efectos adversos , Traumatismos por Radiación/diagnóstico , Medición de Riesgo/métodos , Humanos , Medicina Militar , Neoplasias Inducidas por Radiación/diagnóstico , Exposición Profesional/efectos adversos , Dosis de Radiación , Protección Radiológica , Radiación Ionizante , Radiobiología
4.
Health Phys ; 115(1): 126-139, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29787439

RESUMEN

In the last decades, technological development has led to an increasing use of devices and systems based on microwave radiation. The increased employment of these devices has elicited questions about the potential long-term health consequences associated with microwave radiation exposure. From this perspective, biological effects of microwave radiation have been the focus of many studies, but the reported scientific data are unclear and contradictory. The aim of this study is to evaluate the potential genotoxic and cellular effects associated with in vitro exposure of human fetal and adult fibroblasts to microwave radiation at the frequency of 25 GHz. For this purpose, several genetic and biological end points were evaluated. Results obtained from comet assay, phosphorylation of H2AX histone, and antikinetochore antibody (CREST)-negative micronuclei frequency excluded direct DNA damage to human fetal and adult fibroblasts exposed to microwaves. No induction of apoptosis or changes in prosurvival signalling proteins were detected. Moreover, CREST analysis showed for both the cell lines an increase in the total number of micronuclei and centromere positive micronuclei in exposed samples, indicating aneuploidy induction due to chromosome loss.


Asunto(s)
Feto/patología , Fibroblastos/patología , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Microondas/efectos adversos , Adulto , Aneuploidia , Células Cultivadas , Ensayo Cometa , Daño del ADN/efectos de la radiación , Feto/efectos de la radiación , Fibroblastos/efectos de la radiación , Histonas/genética , Humanos , Pruebas de Micronúcleos
5.
Environ Mol Mutagen ; 59(6): 476-487, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29602275

RESUMEN

The applications of Terahertz (THz) technologies have significantly developed in recent years, and the complete understanding of the biological effects of exposure to THz radiation is becoming increasingly important. In a previous study, we found that THz radiation induced genomic damage in fetal fibroblasts. Although these cells demonstrated to be a useful model, exposure of human foetuses to THz radiation is highly improbable. Conversely, THz irradiation of adult dermal tissues is cause of possible concern for some professional and nonprofessional categories. Therefore, we extended our study to the investigation of the effects of THz radiation on adult fibroblasts (HDF). In this work, the effects of THz exposure on HDF cells genome integrity, cell cycle, cytological ultrastructure and proteins expression were assessed. Results of centromere-negative micronuclei frequencies, phosphorylation of H2AX histone, and telomere length modulation indicated no induction of DNA damage. Concordantly, no changes in the expression of proteins associated with DNA damage sensing and repair were detected. Conversely, our results showed an increase of centromere-positive micronuclei frequencies and chromosomal nondisjunction events, indicating induction of aneuploidy. Therefore, our results indicate that THz radiation exposure may affect genome integrity through aneugenic effects, and not by DNA breakage. Our findings are compared to published studies, and possible biophysical mechanisms are discussed. Environ. Mol. Mutagen. 59:476-487, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Aneuploidia , Aberraciones Cromosómicas/efectos de la radiación , Fibroblastos/efectos de la radiación , Radiación Terahertz/efectos adversos , Adulto , Ciclo Celular/efectos de la radiación , Línea Celular , Daño del ADN/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Inestabilidad Genómica/efectos de la radiación , Humanos , Pruebas de Micronúcleos , Homeostasis del Telómero/efectos de la radiación
6.
Int J Radiat Biol ; 93(1): 75-80, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27559844

RESUMEN

PURPOSE: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. MATERIALS AND METHODS: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. RESULTS: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). CONCLUSIONS: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Asunto(s)
Planificación en Desastres/organización & administración , Monitoreo de Radiación/métodos , Liberación de Radiactividad Peligrosa , Radiobiología/educación , Administración de la Seguridad/organización & administración , Triaje/organización & administración , Europa (Continente)
7.
Int J Radiat Biol ; 93(1): 36-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27673504

RESUMEN

PURPOSE: In the framework of the 'Realizing the European Network of Biodosimetry' (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. MATERIALS AND METHODS: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. RESULTS: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (≤ 0.94 Gy). For higher dose points (≥ 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. CONCLUSION: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories.


Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Int J Radiat Biol ; 93(1): 20-29, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27766931

RESUMEN

PURPOSE: Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. MATERIALS AND METHODS: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. RESULTS: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. CONCLUSIONS: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.


Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Health Phys ; 106(6): 787-97, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24776913

RESUMEN

In cases of an accidental overexposure to ionizing radiation, it is essential to estimate the individual absorbed dose of a potentially radiation-exposed person. For this purpose, biological dosimetry can be performed to confirm, complement or even replace physical dosimetry when this proves to be unavailable. The most validated biodosimetry techniques for dose estimation are the dicentric chromosome assay, the "gold standard" for individual dose assessment, and cytokinesis-block micronucleus assay. However, both assays are time consuming and require skilled scorers. In case of large-scale accidents, different strategies have been developed to increase the throughput of cytogenetic service laboratories. These are the decrease of cell numbers to be scored for triage dosimetry; the automation of procedures including the scoring of, for example, aberrant chromosomes and micronuclei; and the establishment of laboratory networks in order to enable mutual assistance if necessary. In this study, the authors compared the accuracy of triage mode biodosimetry by dicentric chromosome analysis and the cytokinesis block micronucleus assay performing both the manual and the automated scoring mode. For dose estimation using dicentric chromosome assay of 10 blind samples irradiated up to 6.4 Gy of x-rays, a number of metaphase spreads were analyzed ranging from 20 up to 50 cells for the manual and from 20 up to 500 cells for the automatic scoring mode. For dose estimation based on the cytokinesis block micronucleus assay, the micronucleus frequency in both 100 and 200 binucleated cells was determined by manual and automatic scoring. The results of both assays and scoring modes were compared and analyzed considering the sensitivity, specificity, and accuracy of dose estimation with regard to the discrimination power of clinically relevant binary categories of exposure doses.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Citocinesis/efectos de la radiación , Pruebas de Micronúcleos/métodos , Dosis de Radiación , Triaje/métodos , Automatización , Humanos
10.
Hip Int ; 21(6): 700-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22135017

RESUMEN

Malpositioning of the acetabular component in total hip arthroplasty (THA) increases the risk of dislocation, reduces the range of motion and may contribute to bearing surface wear. During computer assisted navigation, the anterior pelvic plane is registered intraoperatively by percutaneous palpation, but this may be unreliable. The aim of our study was to evaluate the reliability of imageless navigation in acetabular positioning employing data acquisition in the supine position and surgery in the lateral position ('flip technique'). We report 24 patients affected by primary osteoarthritis undergoing THA in which implants were placed with a conventional free-hand technique using the acetabular transverse ligament for cup orientation. For imageless navigation we used Orthopilot-Aesculap software. All patients had a postoperative computed tomography (CT) scan at three months, using previously validated dedicated software for cup orientation. Data collected using navigation software were compared with CT measurements. The mean acetabular inclination and anteversion recorded intra-operatively using navigation software were respectively 41°5' (SD: 9.61) and 9°5' (SD: 4.01) respectively. The mean inclination and anteversion calculated post-operatively by the CT based image software were 44°2' (SD 5.83) and 14°4' (SD 6.42) respectively. There was a statistically significant difference between the anteversion values (p=0.04). Therefore, the acquisition of parameters in the supine position with surgery performed in the lateral decubitus position creates unreliable data concerning cup anteversion using an imageless navigation system, and therefore the 'flip technique' cannot be recommended.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Prótesis de Cadera , Ajuste de Prótesis , Cirugía Asistida por Computador/métodos , Acetábulo/cirugía , Anciano , Artroplastia de Reemplazo de Cadera/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/cirugía , Falla de Prótesis , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA