Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Elife ; 102021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34970966

RESUMEN

Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here, we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Activación de Linfocitos/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Línea Celular , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos
3.
Nucleic Acids Res ; 45(11): 6628-6643, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28520979

RESUMEN

Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Ribosomas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Cycle ; 14(14): 2226-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030272

RESUMEN

The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.


Asunto(s)
Enfermedades Mitocondriales/patología , Ribosomas Mitocondriales/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , MicroARNs/metabolismo , Enfermedades Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Estructura Cuaternaria de Proteína , ARN Helicasas/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo
5.
Cell Metab ; 18(5): 712-25, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24206665

RESUMEN

Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Mitocondrias/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , ARN Helicasas DEAD-box/química , ADN Mitocondrial/genética , Humanos , Intrones/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Datos de Secuencia Molecular , Mutación/genética , Fosforilación Oxidativa , Unión Proteica/genética , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Ribonucleoproteínas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...