Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38930439

RESUMEN

Periodontitis is a destructive inflammatory response triggered by dysbiosis. Lactobacillus acidophilus LA5 (LA5) may impair microbial colonization and alter the host. Thus, we evaluated the effect of LA5 on alveolar bone loss in a periodontitis murine model and investigated its effect on the oral and gut microbiomes. Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Streptococcus gordonii were inoculated in C57BL/6 mice (P+), with LA5 (L+). SHAM infected controls (P- and/or L- groups) were also evaluated. After 45 days, alveolar bone loss in the maxilla and oral and gut microbiomes were determined. The administration of LA5 controlled the microbial consortium-induced alveolar bone loss. Periodontopathogens infection resulted in shifts in the oral and gut microbiomes consistent with dysbiosis, and LA5 reshaped these changes. The oral microbiome of P+L- group showed the increased abundance of Enterococaccea, Streptoccocaceae, Staphylococcaceae, Moraxellaceae, and Pseudomonadaceae, which were attenuated by the administration of LA5 to the infected group (P+L+). The administration of LA5 to otherwise non-infected mice resulted in the increased abundance of the superphylum Patescibacteria and the family Saccharamonadaceae in the gut. These data indicate L. acidophilus LA5 as a candidate probiotic for the control of periodontitis.

2.
PeerJ ; 10: e13507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846888

RESUMEN

Background: Public health research frequently requires the integration of information from different data sources. However, errors in the records and the high computational costs involved make linking large administrative databases using record linkage (RL) methodologies a major challenge. Methods: We present Tucuxi-BLAST, a versatile tool for probabilistic RL that utilizes a DNA-encoded approach to encrypt, analyze and link massive administrative databases. Tucuxi-BLAST encodes the identification records into DNA. BLASTn algorithm is then used to align the sequences between databases. We tested and benchmarked on a simulated database containing records for 300 million individuals and also on four large administrative databases containing real data on Brazilian patients. Results: Our method was able to overcome misspellings and typographical errors in administrative databases. In processing the RL of the largest simulated dataset (200k records), the state-of-the-art method took 5 days and 7 h to perform the RL, while Tucuxi-BLAST only took 23 h. When compared with five existing RL tools applied to a gold-standard dataset from real health-related databases, Tucuxi-BLAST had the highest accuracy and speed. By repurposing genomic tools, Tucuxi-BLAST can improve data-driven medical research and provide a fast and accurate way to link individual information across several administrative databases.


Asunto(s)
Investigación Biomédica , Registro Médico Coordinado , Humanos , Registro Médico Coordinado/métodos , Bases de Datos Factuales , Brasil , Salud Pública
3.
Front Microbiol ; 11: 843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477295

RESUMEN

Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ∼2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.

4.
Cell Rep ; 31(12): 107813, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579939

RESUMEN

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into competitors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain of l,d-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical assays reveal that Tlde1 displays both l,d-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides between meso-diaminopimelic acid3 and d-alanine4 and l,d-transpeptidase exchange activity by replacing d-alanine4 by a non-canonical d-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our current knowledge about bacterial effectors used in interbacterial competition and reveals a different mechanism of bacterial antagonism.


Asunto(s)
Antibacterianos/farmacología , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Evolución Molecular , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Proteobacteria/efectos de los fármacos , Proteobacteria/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo
5.
Physiol Genomics ; 51(9): 411-431, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31282806

RESUMEN

Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.


Asunto(s)
Dieta de Carga de Carbohidratos/efectos adversos , Hiperglucemia/etiología , Hígado/metabolismo , MicroARNs/genética , Oncorhynchus mykiss/genética , Transcriptoma , Animales , Regulación de la Expresión Génica , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Insulina/metabolismo , Periodo Posprandial/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
6.
J Biol Chem ; 293(27): 10767-10781, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29728456

RESUMEN

The second messenger cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of bacterial lifestyle, controlling several behaviors, including the switch between sessile and motile states. The c-di-GMP levels are controlled by the interplay between diguanylate cyclases (DGCs) and phosphodiesterases, which synthesize and hydrolyze this second messenger, respectively. These enzymes often contain additional domains that regulate activity via binding of small molecules, covalent modification, or protein-protein interactions. A major challenge remains to understand how DGC activity is regulated by these additional domains or interaction partners in specific signaling pathways. Here, we identified a pair of co-transcribed genes (xac2382 and xac2383) in the phytopathogenic, Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), whose mutations resulted in opposing motility phenotypes. We show that the periplasmic cache domain of XAC2382, a membrane-associated DGC, interacts with XAC2383, a periplasmic binding protein, and we provide evidence that this interaction regulates XAC2382 DGC activity. Moreover, we solved the crystal structure of XAC2383 with different ligands, indicating a preference for negatively charged phosphate-containing compounds. We propose that XAC2383 acts as a periplasmic sensor that, upon binding its ligand, inhibits the DGC activity of XAC2382. Of note, we also found that this previously uncharacterized signal transduction system is present in several other bacterial phyla, including Gram-positive bacteria. Phylogenetic analysis of homologs of the XAC2382-XAC2383 pair supports several independent origins that created new combinations of XAC2382 homologs with a conserved periplasmic cache domain with different cytoplasmic output module architectures.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Xanthomonas/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Movimiento Celular , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Homología de Secuencia , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
7.
Front Microbiol ; 8: 2389, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259589

RESUMEN

Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.

8.
J Bacteriol ; 199(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28559295

RESUMEN

Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular "weaponry" deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance.IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.


Asunto(s)
Bacteriófagos/genética , Péptidos/genética , Péptidos/metabolismo , Plásmidos , Biología Computacional , Evolución Molecular , Dominios Proteicos
9.
Curr Top Microbiol Immunol ; 384: 3-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25027823

RESUMEN

Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.


Asunto(s)
ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Evolución Molecular , ADP Ribosa Transferasas/química , Animales , Humanos , Familia de Multigenes , Procesamiento Proteico-Postraduccional
10.
Genome Announc ; 2(3)2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24970824

RESUMEN

Streptomyces olindensis DAUFPE 5622, which was isolated from a Brazilian soil sample, produces the antitumor anthracycline cosmomycin D. The genome sequence is 9.4 Mb in length, with a G+C content of 71%. Thirty-four putative secondary metabolite biosynthetic gene clusters were identified, including the cosmomycin D cluster.

11.
Proc Natl Acad Sci U S A ; 111(5): 1676-83, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24398522

RESUMEN

TET/JBP dioxygenases oxidize methylpyrimidines in nucleic acids and are implicated in generation of epigenetic marks and potential intermediates for DNA demethylation. We show that TET/JBP genes are lineage-specifically expanded in all major clades of basidiomycete fungi, with the majority of copies predicted to encode catalytically active proteins. This pattern differs starkly from the situation in most other organisms that possess just a single or a few copies of the TET/JBP family. In most basidiomycetes, TET/JBP genes are frequently linked to a unique class of transposons, KDZ (Kyakuja, Dileera, and Zisupton) and appear to have dispersed across chromosomes along with them. Several of these elements typically encode additional proteins, including a divergent version of the HMG domain. Analysis of their transposases shows that they contain a previously uncharacterized version of the RNase H fold with multiple distinctive Zn-chelating motifs and a unique insert, which are predicted to play roles in structural stabilization and target sequence recognition, respectively. We reconstruct the complex evolutionary history of TET/JBPs and associated transposons as involving multiple rounds of expansion with concomitant lineage sorting and loss, along with several capture events of TET/JBP genes by different transposon clades. On a few occasions, these TET/JBP genes were also laterally transferred to certain Ascomycota, Glomeromycota, Viridiplantae, and Amoebozoa. One such is an inactive version, calnexin-independence factor 1 (Cif1), from Schizosaccharomyces pombe, which has been implicated in inducing an epigenetically transmitted prion state. We argue that this unique transposon-TET/JBP association is likely to play important roles in speciation during evolution and epigenetic regulation.


Asunto(s)
Elementos Transponibles de ADN/genética , Epigénesis Genética , Hongos/genética , Genes Fúngicos/genética , Filogenia , Secuencia de Aminoácidos , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Transposasas/química , Transposasas/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-22919680

RESUMEN

The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Flujo Génico , Simbiosis , Adaptación Biológica , Transferencia de Gen Horizontal
13.
Biol Direct ; 7: 18, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22731697

RESUMEN

BACKGROUND: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. RESULTS: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. CONCLUSIONS: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.


Asunto(s)
Bacterias/metabolismo , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Ecosistema , Genoma Bacteriano , Genómica/métodos , Secuencia de Aminoácidos , Animales , Bacterias/genética , Bacterias/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Toxinas Bacterianas/genética , Dominio Catalítico , Endonucleasas/metabolismo , Evolución Molecular , Sitios Genéticos , Variación Genética , Humanos , Metaloproteasas/inmunología , Metaloproteasas/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Transducción de Señal , Simbiosis
14.
Gene ; 475(2): 63-78, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21182906

RESUMEN

Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein signaling systems in several poorly studied eukaryotic lineages such as the parabasalids, heteroloboseans and stramenopiles. This indicated that the Gα subunit is likely to have separated from the ARF-like GTPases prior to the last eukaryotic common ancestor. We systematically identified the structure and sequence features associated with this divergence and found that most of the neomorphic positions in Gα form a ring of residues centered on the nucleotide binding site, several of which are likely to be critical for interactions with the RGS domain for its GAP function. We also present evidence that in some of the potentially early branching eukaryotic lineages, like Trichomonas, Gα is likely to function independently of the Gßγ subunits. We were able to identify previously unknown Gγ subunits in Naegleria, suggesting that the trimeric version was already present by the time of the divergence of the heteroloboseans from the remaining eukaryotes. Evolution of Gα subunits is dominated by several independent lineage-specific expansions (LSEs). In most of these cases there are concomitant, independent LSEs of RGS proteins along with an extraordinary diversification of their domain architectures. The diversity of RGS domains from Naegleria in particular, which has the largest complement of Gα and RGS proteins for any eukaryote, provides new insights into RGS function and evolution. We uncovered a new class of soluble ligand receptors of bacterial origin with RGS domains and an extraordinary diversity of membrane-linked, redox-associated, adhesion-dependent and small molecule-induced G-protein signaling networks that evolved in early-branching eukaryotes, independently of parallel systems in animals. Furthermore, this newly characterized diversity of RGS domains helps in defining their ancestral conserved interfaces with Gα and also those interfaces that are prone to extensive lineage-specific diversification and are thereby responsible for selectivity in Gα-RGS interactions. Several mushrooms show LSEs of Gαs but not of RGS proteins pointing to the probable differentiation of Gαs in conjunction with mating-type diversity. When combined with the characterization of the 7TM receptors (GPCRs), it becomes apparent that, through much of eukaryotic evolution, cells contained both 7TM receptors that acted as GEFs and those as GAPs (with C-terminal RGS domains) for Gαs. Only in some lineages like animals and stramenopiles the 7TM receptors were restricted to GEF only roles, probably due to selection imposed by the rate-constants of the Gαs that underwent lineage-specific expansion in them. In the alveolate lineage the 7TM receptors occur independently of heterotrimeric G-proteins, suggesting the prevalence of G-protein-independent signaling in these organisms.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas RGS/genética , Transducción de Señal , Sitios de Unión , Eucariontes , Evolución Química , GTP Fosfohidrolasas/genética , Genómica , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Transducción de Señal/genética
15.
Biol Direct ; 5: 48, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20678224

RESUMEN

BACKGROUND: Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS) in non-ribosomal peptide ligation. RESULTS: Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs) are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS). We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. CONCLUSIONS: The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the conventional AAtRS, through closely related paralogous AAtRS dedicated to certain pathways, to highly derived versions of the class-I AAtRS catalytic domain like the CDPSs. Both the conventional AAtRS and their closely related paralogs often provide aminoacylated tRNAs for peptide ligations by MprF/Fem/MurM-type acetyltransferase fold ligases in the synthesis of peptidoglycan, N-end rule modifications of proteins, lipid aminoacylation or biosynthesis of antibiotics, such as valinamycin. Alternatively they might supply aminoacylated tRNAs for other biosynthetic pathways like that for tetrapyrrole or directly function as peptide ligases as in the case of mycothiol and those identified here.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Ribosomas/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biosíntesis de Péptidos/genética , Biosíntesis de Péptidos/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Ribosomas/genética
16.
BMC Res Notes ; 3: 150, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20507617

RESUMEN

BACKGROUND: From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC), clones that were representative of the largest possible number of coding sequences (CDSs) were selected to create a DNA microarray platform on glass slides (XACarray). The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. FINDINGS: The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. CONCLUSIONS: Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas.

17.
Bioinformatics ; 26(12): 1477-80, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20448139

RESUMEN

UNLABELLED: Interactions of the ESCRT complexes are critical for endosomal trafficking. We identify two domains with potential significance for this process. The MABP domain present in metazoan ESCRT-I/MVB12 subunits, Crag, a regulator of protein sorting, and bacterial pore-forming proteins might mediate novel membrane interactions in trafficking. The UBAP1-MVB12-associated UMA domain found in MVB12 and UBAP1 defines a novel adaptor that might recruit diverse targets to ESCRT-I. SUPPLEMENTARY INFORMATION: Supplementary data are available at ftp://ftp.ncbi.nih.gov/pub/aravind/UMA/MVB12.html.


Asunto(s)
Proteínas Portadoras/química , Endocitosis/fisiología , Endosomas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
BMC Genomics ; 11: 238, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20388224

RESUMEN

BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Asunto(s)
Citrus/microbiología , Genoma Bacteriano/genética , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Agrobacterium tumefaciens/genética , Biopelículas , Flagelos/genética , Genes Bacterianos/genética , Familia de Multigenes , Antígenos O/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Percepción de Quorum/genética , Ralstonia solanacearum/genética , Especificidad de la Especie , Xanthomonas/citología , Xanthomonas/metabolismo , Xanthomonas/fisiología
19.
Nucleic Acids Res ; 38(16): 5261-79, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20423905

RESUMEN

Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPhe. Identification of this enzyme raised questions regarding the emergence of protein- and nucleic acid-modifying activities among jumonji-related domains. We addressed these with a natural classification of DSBH domains and reconstructed the precursor of the dioxygenases as a sugar-binding domain. This precursor gave rise to sugar epimerases and metal-binding sugar isomerases. The sugar isomerase active site was exapted for catalysis of oxygenation, with a radiation of these enzymes in bacteria, probably due to impetus from the primary oxygenation event in Earth's history. 2-Oxoglutarate-dependent versions appear to have further expanded with rise of the tricarboxylic acid cycle. We identify previously under-appreciated aspects of their active site and multiple independent innovations of 2-oxoacid-binding basic residues among these superfamilies. We show that double-stranded ß-helix dioxygenases diversified extensively in biosynthesis and modification of halogenated siderophores, antibiotics, peptide secondary metabolites and glycine-rich collagen-like proteins in bacteria. Jumonji-related domains diversified into three distinct lineages in bacterial secondary metabolism systems and these were precursors of the three major clades of eukaryotic enzymes. The specificity of wybutosine hydroxylase/peroxidase probably relates to the structural similarity of the modified moiety to the ancestral amino acid substrate of this superfamily.


Asunto(s)
Dioxigenasas/química , Evolución Molecular , Oxigenasas de Función Mixta/química , Nucleósidos/metabolismo , Peroxidasas/química , Secuencia de Aminoácidos , Bacterias/enzimología , Dominio Catalítico , Dioxigenasas/genética , Dioxigenasas/metabolismo , Eucariontes/enzimología , Genes Bacterianos , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Péptidos/metabolismo , Peroxidasas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN de Transferencia de Fenilalanina/metabolismo , Homología de Secuencia de Aminoácido
20.
Biochim Biophys Acta ; 1799(3-4): 302-18, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19878744

RESUMEN

Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.


Asunto(s)
Cromatina/fisiología , Virus ADN/fisiología , Evolución Molecular , Regulación Viral de la Expresión Génica , Nucleoproteínas/fisiología , Proteínas Virales/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...