Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carcinogenesis ; 44(6): 511-524, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37195263

RESUMEN

Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified. However, basal cell carcinomas also showed distinct C>A mutation spectra reflecting a mutational signature possibly related to sunlight-induced oxidative stress. Moreover, four samples carry different mutational signatures, with C>A mutations associated with tobacco chewing or smoking usage. Thus, XP-V patients should be warned of the risk of these habits. Surprisingly, higher levels of retrotransposon somatic insertions were also detected when the tumors were compared with non-XP skin tumors, revealing other possible causes for XP-V tumors and novel functions for the TLS polymerase eta in suppressing retrotransposition. Finally, the expected high mutation burden found in most of these tumors renders these XP patients good candidates for checkpoint blockade immunotherapy.


Asunto(s)
Neoplasias Cutáneas , Xerodermia Pigmentosa , Humanos , Xerodermia Pigmentosa/genética , Retroelementos/genética , Mutación , Reparación del ADN , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos
2.
Neurobiol Aging ; 113: 108-117, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325812

RESUMEN

Aged and photoaged skin exhibit fine wrinkles that are signs of epidermal inflammation and degeneration. It has been shown that healthy elderly skin expresses amyloidogenic proteins, including α-Synuclein, which are known to oligomerize and trigger inflammation and neurodegeneration. However, little is known about their putative role in skin physiology and sensitivity. To unravel this possible role, we investigated the impact of oligomeric α-Synuclein (Oα-Syn) in 2D and 3D keratinocyte human models. Exogenous Oα-Syn caused degeneration of reconstructed human epidermis (RHE) by diminishing proliferation and thickness of the stratum basale. Oα-Syn also increased NF-kB nuclear translocation in keratinocytes and triggered inflammation in the RHE, by increasing expression of interleukin-1ß and tumor necrosis factor-alpha, and the release of tumor necrosis factor-alpha in a time-dependent manner. Dexamethasone and an IL-1ß inhibitor partially diminished RHE degeneration caused by Oα-Syn. These findings suggest that Oα-Syn induces epidermal inflammation and decreases keratinocyte proliferation, and therefore might contribute to epidermal degeneration observed in human skin aging.


Asunto(s)
Factor de Necrosis Tumoral alfa , alfa-Sinucleína , Anciano , Epidermis/metabolismo , Epidermis/patología , Humanos , Inflamación/metabolismo , Queratinocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , alfa-Sinucleína/metabolismo
3.
Sci Rep ; 9(1): 13357, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527774

RESUMEN

Previous studies have shown that physicochemical properties of hair can be impacted by internal and environmental exposures ranging from chemical stressors to weather. Besides the effects on hair, these exposures, termed "exposome", can act on specific organs including skin, as a synergistic damaging effect of UV exposure and pollution on human surfaces. The combination of several environmental factors such as sun exposure, temperature, relative humidity, air pollution and photo-oxidation caused by ground level ozone impacts hair properties such as melanin oxidation, protein content, surface quality and structural components. Therefore, exposome studies can reveal new hypotheses on how epithelia and hair could be affected by daily life environment and routine. The aim of this study was to evaluate the impact of several environmental aggressors on human surfaces, using portable and wearable devices for monitoring exposome. To better understand the underlying mechanisms associated with environmental factors, two subjects wore multiple sensors to capture the meteorological conditions biking through urban areas in summer and winter. Temperature, humidity, UV radiation and ozone concentration were recorded and hair swatches of different types, including natural, bleached/colored, colored and gray, were exposed on the helmets. Silicon wristbands were used on skin to identify main chemical aggressors. After exposure, hair swatches were analyzed by surface microscopy analysis, oxidation markers and more than 1,500 chemicals were evaluated on the bracelets. Correlated with GPS and monitoring data, all these results provide insights on how environmental stressors affect the quality of different hair types and body surface according to exposure routine. Our results suggest extreme climate conditions associated with hair damage and photo-oxidative marker linked to the environmental aggressors. Polycyclic aromatic hydrocarbons (PAH) indicate possible causes of hair damages. This is the first meteorotropic study of its kind, combining environmental aggressors related to hair damage, opening new research hypothesis further studies on exposome.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Cabello/química , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Brasil , Monitoreo del Ambiente/instrumentación , Contaminación Ambiental/análisis , Exposoma , Humanos , Ozono/análisis , Dispositivos Electrónicos Vestibles
4.
Front Mol Neurosci ; 11: 277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186108

RESUMEN

Neural crest stem cells (NCPCs) have been shown to differentiate into various cell types and tissues during embryonic development, including sensory neurons. The few studies addressing the generation of NCPCs and peripheral sensory neurons (PSNs) from human induced pluripotent stem cells (hiPSCs), generated sensory cells without displaying robust activity. Here, we describe an efficient strategy for hiPSCs differentiation into NCPCs and functional PSNs using chemically defined media and factors to achieve efficient differentiation, confirmed by the expression of specific markers. After 10 days hiPSCs differentiated into NCPCs, cells were then maintained in neural induction medium containing defined growth factors for PSNs differentiation, followed by 10 days in neonatal human epidermal keratinocytes- (HEKn-) conditioned medium (CM). We observed a further increase in PSN markers expression and neurites length after CM treatment. The resulting neurons elicited action potentials after current injection and released substance P (SP) in response to nociceptive agents such as anandamide and resiniferatoxin. Anandamide induced substance P release via activation of TRPV1 and not CB1. Transcriptomic analysis of the PSNs revealed the main dorsal root ganglia neuronal markers and a transcriptional profile compatible with C fiber-low threshold mechanoreceptors. TRPV1 was detected by immunofluorescence and RNA-Seq in multiple experiments. In conclusion, the developed strategy generated PSNs useful for drug screening that could be applied to patient-derived hiPSCs, consisting in a powerful tool to model human diseases in vitro.

5.
Artículo en Inglés | MEDLINE | ID: mdl-27909689

RESUMEN

Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been associated with Malassezia yeasts. However, the microbial role has not been elucidated yet, and the etiology of the disorder remains poorly understood. Using high-throughput 16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional and non-lesional skin sites). Bacterial and fungal communities from dandruff analyzed at genus level differed in comparison with healthy ones, presenting higher diversity and greater intragroup variation. The microbial shift was observed also in non-lesional sites from dandruff subjects, suggesting that dandruff is related to a systemic process that is not restricted to the site exhibiting clinical symptoms. In contrast, Malassezia microbiota analyzed at species level did not differ according to health status. A 2-step OTU assignment using combined databases substantially increased fungal assigned sequences, and revealed the presence of highly prevalent uncharacterized Malassezia organisms (>37% of the reads). Although clinical symptoms of dandruff manifest locally, microbial dysbiosis beyond clinically affected skin sites suggests that subjects undergo systemic alterations, which could be considered for redefining therapeutic approaches.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Caspa/microbiología , Disbiosis , Hongos/clasificación , Hongos/aislamiento & purificación , Piel/microbiología , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Hongos/genética , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Antimicrob Agents Chemother ; 56(5): 2259-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22330919

RESUMEN

Nanoenabled drug delivery systems against tuberculosis (TB) are thought to control pathogen replication by targeting antibiotics to infected tissues and phagocytes. However, whether nanoparticle (NP)-based carriers directly interact with Mycobacterium tuberculosis and how such drug delivery systems induce intracellular bacterial killing by macrophages is not defined. In the present study, we demonstrated that a highly hydrophobic citral-derived isoniazid analogue, termed JVA, significantly increases nanoencapsulation and inhibits M. tuberculosis growth by enhancing intracellular drug bioavailability. Importantly, confocal and atomic force microscopy analyses revealed that JVA-NPs associate with both intracellular M. tuberculosis and cell-free bacteria, indicating that NPs directly interact with the bacterium. Taken together, these data reveal a nanotechnology-based strategy that promotes antibiotic targeting into replicating extra- and intracellular mycobacteria, which could actively enhance chemotherapy during active TB.


Asunto(s)
Antituberculosos/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Nanopartículas , Animales , Disponibilidad Biológica , Células Cultivadas , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ácido Láctico/química , Macrófagos/microbiología , Ratones , Microscopía de Fuerza Atómica , Microscopía Confocal , Mycobacterium tuberculosis/fisiología , Tamaño de la Partícula , Fagocitosis , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...