Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117797

RESUMEN

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38605723

RESUMEN

The eukaryotic TORC1 kinase integrates and links nutritional, energy, and hormonal signals to cell growth and homeostasis, and its deregulation is associated with human diseases including neurodegeneration, cancer, and metabolic syndrome. Quantification of TORC1 activities in various genetic settings and defined physiological conditions generally relies on the assessment of the phosphorylation level of residues in TORC1 targets. Here we show that two commonly used TORC1 effectors in yeast, namely Sch9 and Rps6, exhibit distinct phosphorylation patterns in response to rapamycin treatment or changes in nitrogen availability, indicating that the choice of TORC1 proxies introduces a bias in decoding TORC1 activity.

3.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38536036

RESUMEN

Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.


Asunto(s)
Endosomas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al GTP rab , Proteínas Activadoras de ras GTPasa , Transporte Biológico , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Vacuolas , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623558

RESUMEN

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

5.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563253

RESUMEN

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Asunto(s)
Acetil-CoA Carboxilasa , Malonil Coenzima A , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Adenosina Trifosfato
6.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259913

RESUMEN

The Saccharomyces cerevisiae casein kinase protein Yck3 is a central regulator at the vacuole that phosphorylates several proteins involved in membrane trafficking. Here, we set out to identify novel substrates of this protein. We found that endogenously tagged Yck3 localized not only at the vacuole, but also on endosomes. To disable Yck3 function, we generated a kinase-deficient mutant and thus identified the I-BAR-protein Ivy1 as a novel Yck3 substrate. Ivy1 localized to both endosomes and vacuoles, and Yck3 controlled this localization. A phosphomimetic Ivy1-SD mutant was found primarily on vacuoles, whereas its non-phosphorylatable SA variant strongly localized to endosomes, similar to what was observed upon deletion of Yck3. In vitro analysis revealed that Yck3-mediated phosphorylation strongly promoted Ivy1 recruitment to liposomes carrying the Rab7-like protein Ypt7. Modeling of Ivy1 with Ypt7 identified binding sites for Ypt7 and a positively charged patch, which were both required for Ivy1 localization. Strikingly, Ivy1 mutations in either site resulted in more cells with multilobed vacuoles, suggesting a partial defect in its membrane biogenesis. Our data thus indicate that Yck3-mediated phosphorylation controls both localization and function of Ivy1 in endolysosomal biogenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Vacuolas/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Caseína Quinasas/metabolismo
7.
Nat Commun ; 14(1): 2775, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188688

RESUMEN

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Madre Pluripotentes Inducidas , Humanos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células HeLa , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mutación
8.
PLoS Genet ; 19(2): e1010641, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791155

RESUMEN

Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.


Asunto(s)
Quinasas Ciclina-Dependientes , Proteínas de Saccharomyces cerevisiae , Quinasas Ciclina-Dependientes/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ciclinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatos/metabolismo , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Elife ; 122023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749016

RESUMEN

The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallett et al., 2015) reported that AMPK in yeast, that is Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Elife ; 112022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904415

RESUMEN

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Manganeso/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Cell Biol ; 221(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404387

RESUMEN

The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.


Asunto(s)
Endosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Endosomas/genética , Endosomas/metabolismo , Aparato de Golgi , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vacuolas/metabolismo
12.
Cell Rep ; 37(13): 110149, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965436

RESUMEN

The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Fosfoproteínas/metabolismo , Proteínas Quinasas/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma/análisis , Saccharomyces cerevisiae/efectos de los fármacos
13.
Genetics ; 217(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857304

RESUMEN

Gln3 activates Nitrogen Catabolite Repression, NCR-sensitive expression of the genes required for Saccharomyces cerevisiae to scavenge poor nitrogen sources from its environment. The global TorC1 kinase complex negatively regulates nuclear Gln3 localization, interacting with an α-helix in the C-terminal region of Gln3, Gln3656-666. In nitrogen replete conditions, Gln3 is sequestered in the cytoplasm, whereas when TorC1 is down-regulated, in nitrogen restrictive conditions, Gln3 migrates into the nucleus. In this work, we show that the C-terminal Gln3-Tor1 interaction site is required for wild type, rapamycin-elicited, Sit4-dependent nuclear Gln3 localization, but not for its dephosphorylation. In fact, truncated Gln31-384 can enter the nucleus in the absence of Sit4 in both repressive and derepressive growth conditions. However, Gln31-384 can only enter the nucleus if a newly discovered second positively-acting Gln3-Tor1 interaction site remains intact. Importantly, the N- and C-terminal Gln3-Tor1 interaction sites function both autonomously and collaboratively. The N-terminal Gln3-Tor1 interaction site, previously designated Gln3URS contains a predicted α-helix situated within an unstructured coiled-coil region. Eight of the thirteen serine/threonine residues in the Gln3URS are dephosphorylated 3-15-fold with three of them by 10-15-fold. Substituting phosphomimetic aspartate for serine/threonine residues in the Gln3 URS abolishes the N-terminal Gln3-Tor1 interaction, rapamycin-elicited nuclear Gln3 localization, and ½ of the derepressed levels of nuclear Gln3 localization. Cytoplasmic Gln3 sequestration in repressive conditions, however, remains intact. These findings further deconvolve the mechanisms that achieve nitrogen-responsive transcription factor regulation downstream of TorC1.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Sitios de Unión , Nitrógeno/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
14.
PLoS Genet ; 17(3): e1009414, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690632

RESUMEN

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


Asunto(s)
Hongos/efectos de los fármacos , Hongos/enzimología , Ácidos Indolacéticos/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Elementos Transponibles de ADN , Relación Dosis-Respuesta a Droga , Activación Enzimática , Hongos/genética , Ácidos Indolacéticos/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores de Proteínas Quinasas/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos
15.
Mol Cell ; 81(9): 1879-1889.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33743194

RESUMEN

The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the ß-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.


Asunto(s)
Aminoácidos/deficiencia , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157024

RESUMEN

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Asunto(s)
Endosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Pruebas de Enzimas , Retroalimentación Fisiológica , Fosforilación/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Transducción de Señal
17.
Elife ; 82019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31687929

RESUMEN

Circadian oscillations emerge from transcriptional and post-translational feedback loops. An important step in generating rhythmicity is the translocation of clock components into the nucleus, which is regulated in many cases by kinases. In mammals, the kinase promoting the nuclear import of the key clock component Period 2 (PER2) is unknown. Here, we show that the cyclin-dependent kinase 5 (CDK5) regulates the mammalian circadian clock involving phosphorylation of PER2. Knock-down of Cdk5 in the suprachiasmatic nuclei (SCN), the main coordinator site of the mammalian circadian system, shortened the free-running period in mice. CDK5 phosphorylated PER2 at serine residue 394 (S394) in a diurnal fashion. This phosphorylation facilitated interaction with Cryptochrome 1 (CRY1) and nuclear entry of the PER2-CRY1 complex. Taken together, we found that CDK5 drives nuclear entry of PER2, which is critical for establishing an adequate circadian period of the molecular circadian cycle. Of note is that CDK5 may not exclusively phosphorylate PER2, but in addition may regulate other proteins that are involved in the clock mechanism. Taken together, it appears that CDK5 is critically involved in the regulation of the circadian clock and may represent a link to various diseases affected by a derailed circadian clock.


Asunto(s)
Relojes Circadianos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Animales , Núcleo Celular/metabolismo , Ritmo Circadiano , Epistasis Genética , Ratones , Células 3T3 NIH , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Fosforilación , Fosfoserina/metabolismo , Estabilidad Proteica , ARN Interferente Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Supraquiasmático/fisiología , Factores de Tiempo
18.
Sci Adv ; 5(9): eaax8164, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31579828

RESUMEN

The Rag/Gtr GTPases serve as a central module in the nutrient-sensing signaling network upstream of TORC1. In yeast, the anchoring of Gtr1-Gtr2 to membranes depends on the Ego1-Ego2-Ego3 ternary complex (EGO-TC), resulting in an EGO-TC-Gtr1-Gtr2 complex (EGOC). EGO-TC and human Ragulator share no obvious sequence similarities and also differ in their composition with respect to the number of known subunits, which raises the question of how the EGO-TC fulfills its function in recruiting Gtr1-Gtr2. Here, we report the structure of EGOC, in which Ego1 wraps around Ego2, Ego3, and Gtr1-Gtr2. In addition, Ego3 interacts with Gtr1-Gtr2 to stabilize the complex. The functional roles of key residues involved in the assembly are validated by in vivo assays. Our structural and functional data combined demonstrate that EGOC and Ragulator-Rag complex are structurally conserved and that EGO-TC is essential and sufficient to recruit Gtr1-Gtr2 to membranes to ensure appropriate TORC1 signaling.


Asunto(s)
Proteínas Fúngicas/química , GTP Fosfohidrolasas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Modelos Moleculares , Complejos Multiproteicos/química , Aminoácidos , Sitios de Unión , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
19.
Cell Rep ; 28(13): 3486-3496.e6, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553916

RESUMEN

The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Humanos , Espectrometría de Masas
20.
J Cell Biol ; 218(9): 3019-3038, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31431476

RESUMEN

Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer's role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid-sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid-sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Microdominios de Membrana/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...