Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 586, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182631

RESUMEN

Mammalian pregnancy requires gradual yet extreme remodeling of the reproductive organs to support the growth of the embryos and their birth. After delivery, the reproductive organs return to their non-pregnant state. As pregnancy has traditionally been understudied, there are many unknowns pertaining to the mechanisms behind this remarkable remodeling and repair process which, when not successful, can lead to pregnancy-related complications such as maternal trauma, pre-term birth, and pelvic floor disorders. This study presents the first longitudinal imaging data that focuses on revealing anatomical alterations of the vagina, cervix, and uterine horns during pregnancy and postpartum using the mouse model. By utilizing advanced magnetic resonance imaging (MRI) technology, T1-weighted and T2-weighted images of the reproductive organs of three mice in their in vivo environment were collected at five time points: non-pregnant, mid-pregnant (gestation day: 9-10), late pregnant (gestation day: 16-17), postpartum (24-72 h after delivery) and three weeks postpartum. Measurements of the vagina, cervix, and uterine horns were taken by analyzing MRI segmentations of these organs. The cross-sectional diameter, length, and volume of the vagina increased in late pregnancy and then returned to non-pregnant values three weeks after delivery. The cross-sectional diameter of the cervix decreased at mid-pregnancy before increasing in late pregnancy. The volume of the cervix peaked at late pregnancy before shortening by 24-72 h postpartum. As expected, the uterus increased in cross-sectional diameter, length, and volume during pregnancy. The uterine horns decreased in size postpartum, ultimately returning to their average non-pregnant size three weeks postpartum. The newly developed methods for acquiring longitudinal in vivo MRI scans of the murine reproductive system can be extended to future studies that evaluate functional and morphological alterations of this system due to pathologies, interventions, and treatments.


Asunto(s)
Imagen por Resonancia Magnética , Útero , Femenino , Humanos , Embarazo , Animales , Ratones , Útero/diagnóstico por imagen , Proyectos de Investigación , Vagina/diagnóstico por imagen , Periodo Posparto , Mamíferos
2.
J Biomech Eng ; 146(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542707

RESUMEN

Often called "the change of life," menopause affects every part of a woman's body. As the sex hormones decrease, the reproductive organs experience the most remarkable changes, with the vagina becoming thinner, drier, and less elastic. Despite the important implications of these changes in genitourinary conditions, there are only a few experimental studies that focus on quantifying the effect of menopause on the mechanical properties of the vagina. These studies are mostly conducted using uniaxial tests on strips of vaginal tissues isolated from rats, rabbits, and sheep and, in only a few cases, from humans. The purpose of this article is to present a systematic review of experimental protocols, methods, and results that are currently published on how menopause alters the mechanical behavior of the vagina. This review will enable new investigators in the biomechanics field to identify important gaps and frame research questions that inform the design of new treatment options for menopausal symptoms.


Asunto(s)
Menopausia , Vagina , Humanos , Femenino , Ratas , Conejos , Animales , Ovinos , Pelvis , Fenómenos Biomecánicos
3.
Adv Sci (Weinh) ; 10(34): e2304091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818760

RESUMEN

Grip strength is a biomarker of frailty and an evaluation indicator of brain health, cardiovascular morbidity, and psychological health. Yet, the development of a reliable, interactive, and point-of-care device for comprehensive multi-sensing of hand grip status is challenging. Here, a relation between soft buckling metamaterial deformations and built piezoelectric voltage signals is uncovered to achieve multiple sensing of maximal grip force, grip speed, grip impulse, and endurance indicators. A metamaterial computational sensor design is established by hyperelastic model that governs the mechanical characterization, machine learning models for computational sensing, and graphical user interface to provide visual cues. A exemplify grip measurement for left and right hands of seven elderly campus workers is conducted. By taking indicators of grip status as input parameters, human-computer interactive games are incorporated into the computational sensor to improve the user compliance with measurement protocols. Two elderly female schizophrenic patients are participated in the real-time interactive point-of-care grip assessment and training for potentially sarcopenia screening. The attractive features of this advanced intelligent metamaterial computational sensing system are crucial to establish a point-of-care biomechanical platform and advancing the human-computer interactive healthcare, ultimately contributing to a global health ecosystem.


Asunto(s)
Fuerza de la Mano , Sarcopenia , Humanos , Femenino , Anciano , Ecosistema , Sistemas de Atención de Punto , Computadores
4.
Adv Healthc Mater ; 12(22): e2300086, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37220996

RESUMEN

Uterosacral ligament suspension (USLS) is a common surgical treatment for pelvic organ prolapse (POP). However, the relatively high failure rate of up to 40% underscores a strong clinical need for complementary treatment strategies, such as biomaterial augmentation. Herein, the first hydrogel biomaterial augmentation of USLS in a recently established rat model is described using an injectable fibrous hydrogel composite. Supramolecularly-assembled hyaluronic acid (HA) hydrogel nanofibers encapsulated in a matrix metalloproteinase (MMP)-degradable HA hydrogel create an injectable scaffold showing excellent biocompatibility and hemocompatibility. The hydrogel can be successfully delivered and localized to the suture sites of the USLS procedure, where it gradually degrades over six weeks. In situ mechanical testing 24 weeks post-operative in the multiparous USLS rat model shows the ultimate load (load at failure) to be 1.70 ± 0.36 N for the intact uterosacral ligament (USL), 0.89 ± 0.28 N for the USLS repair, and 1.37 ± 0.31 N for the USLS + hydrogel (USLS+H) repair (n = 8). These results indicate that the hydrogel composite significantly improves load required for tissue failure compared to the standard USLS, even after the hydrogel degrades, and that this hydrogel-based approach can potentially reduce the high failure rate associated with USLS procedures.


Asunto(s)
Hidrogeles , Prolapso de Órgano Pélvico , Femenino , Animales , Ratas , Hidrogeles/farmacología , Útero , Prolapso de Órgano Pélvico/cirugía , Ligamentos , Resultado del Tratamiento
5.
J Mech Behav Biomed Mater ; 140: 105702, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764168

RESUMEN

Smooth muscle cells contribute to the mechanical function of various soft tissues, however, their contribution to the viscoelastic response when subjected to multiaxial loading remains unknown. The vagina is a fibromuscular viscoelastic organ that is exposed to prolonged and increased pressures with daily activities and physiologic processes such as vaginal birth. The vagina changes in geometry over time under prolonged pressure, known as creep. Vaginal smooth muscle cells may contribute to creep. This may be critical for the function of vaginal and other soft tissues that experience fluctuations in their biomechanical environment. Therefore, the objective of this study was to develop methods to evaluate the contribution of smooth muscle to vaginal creep under multiaxial loading using extension - inflation tests. The vaginas from wildtype mice (C57BL/6 × 129SvEv; 3-6 months; n = 10) were stimulated with various concentrations of potassium chloride then subjected to the measured in vivo pressure (7 mmHg) for 100 s. In a different cohort of mice (n = 5), the vagina was stimulated with a single concentration of potassium chloride then subjected to 5 and 15 mmHg. A laser micrometer measured vaginal outer diameter in real-time. Immunofluorescence evaluated the expression of alpha-smooth muscle actin and myosin heavy chain in the vaginal muscularis (n = 6). When smooth muscle contraction was activated, vaginal creep behavior increased compared to the relaxed state. However, increased pressure decreased the active creep response. This study demonstrated that extension - inflation protocols can be used to evaluate smooth muscle contribution to the viscoelastic response of tubular soft tissues.


Asunto(s)
Contracción Muscular , Músculo Liso , Femenino , Ratones , Animales , Cloruro de Potasio/metabolismo , Ratones Endogámicos C57BL , Músculo Liso/fisiología , Contracción Muscular/fisiología , Vagina/fisiología
6.
Ann Biomed Eng ; 51(4): 702-714, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36652028

RESUMEN

This manuscript presents new experimental methods for testing the ex vivo tensile properties of the uterosacral ligaments (USLs) in rats. The USL specimens ([Formula: see text]) were carefully dissected to preserve their anatomical attachments, and they were loaded along their main in vivo loading direction (MD) using a custom-built uniaxial tensile testing device. During loading, strain maps in both the MD and the perpendicular direction (PD) were collected using the digital image correlation technique. The mean (± S.E.M.) maximum load and displacement at the maximum load were [Formula: see text] N and [Formula: see text] mm, respectively. The USLs were found to be highly heterogeneous structures, with some specimens experiencing strains in the MD that were lower than [Formula: see text] and others reaching strains that were up to [Formula: see text] in the intermediate region. At 0.5 kPa stress, a value reached by all the specimens, the mean strain in the MD was [Formula: see text] while at 5 kPa stress, a value achieved only by 9 out of the 21 specimens, the mean strain increased to [Formula: see text]. Under uniaxial loading, the specimens also elongated in the PD, with strains that were one order of magnitude lower than the strains in the MD; at the 0.5 kPa stress, the mean strain in the PD was recorded to be [Formula: see text] and, at the 5 kPa stress, the strain in the PD was [Formula: see text]. The directions of maximum principal strains remained almost unchanged with the increase in stress, indicating that little microstructural re-organization occurred due to uniaxial loading. This study serves as a springboard for future investigations on the supportive function of the USLs in the rat model by offering guidelines on testing methods that capture their complex mechanical behavior.


Asunto(s)
Ligamentos , Útero , Femenino , Animales , Ratas , Fenómenos Biomecánicos , Estrés Mecánico
7.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574505

RESUMEN

Consumption of zearalenone (ZEN) detrimentally affects tissues and systems throughout the body, and these deleterious effects are especially pronounced in swine. The objectives of this project were to determine the effects of short-term consumption of ZEN (at concentrations that could be found on-farm) on growth, carcass weight, liver weight, and reproductive tissues of pubertal gilts, and to determine if the effects are transient or persistent. Cross-bred gilts (107.25 ± 2.69 kg) were randomly assigned to one of three feed treatments: 1) solvent only for 21 d (CON; n = 10), 2) ZEN for 7 d followed by 14 d of solvent (ZEN-7; 6 mg/d; n = 10), and 3) ZEN for 21 d (ZEN-21; 6 mg/d; n = 10). Body weights were collected at the beginning and end of the experiment (189.1 ± 0.8 and 211.1 ± 0.8 d of age, respectively). Carcass weights and tissues were collected at harvest. There were no treatment-based differences in growth, carcass, liver, or reproductive tissue weights. Histological analyses revealed differences based on treatment and the interaction between treatment and luteal status. The thickness of the ampullary muscularis declined with ZEN exposure (P < 0.05), while the isthmic epithelial cell height (P < 0.01) and uterine endometrial thickness (P < 0.02) increased. Interestingly, the thickness of the isthmic muscularis, uterine myometrium, and epithelial cell height only differed in the presence of a corpus luteum. Uterine epithelial cell height in the luteal phase was lowest in ZEN-7 pigs (P < 0.01). The isthmic muscularis in the luteal phase was thinner in pigs from both ZEN treatments (P < 0.01). Conversely, the luteal-stage myometrium was thicker in pigs from both ZEN treatments (P < 0.01). The discovery of these tissue-based differences during the luteal phase is particularly concerning since this corresponds with the time when embryos would be affected by the functional competency of the oviduct and uterus. The results of this work demonstrate that short-term consumption of ZEN produces microscopic, but not macroscopic alterations in reproductive organs which are likely to have negative effects on their subsequent function and that these differences persist even after ZEN consumption ceases. Taken together, these results indicate that it is insufficient to rely solely on outwardly visible symptoms as indicators of zearalenone exposure, as detrimental effects on reproductive tissues were found in the absence of phenotypic and morphologic changes.


The mycotoxin zearalenone is a common contaminant of livestock feed. The consumption of zearalenone is particularly problematic for pigs as they are very sensitive to its effects. This study evaluated the effects of zearalenone on growth, carcass weight, liver weight, and reproductive tissues in young female pigs. Thirty pigs were split across three treatment groups. The control group was given standard feed (no zearalenone added) for 21 d, the second group received zearalenone-treated feed for 7 d followed by 14 d of standard feed, and the third group received zearalenone-treated feed for the full 21 d. Pigs receiving the treated feed exhibited no visible symptoms associated with zearalenone consumption. There were also no treatment-related differences in growth, carcass weight, liver weight, or reproductive tract weight. Histological analyses of both the oviduct and uterus revealed changes in tissue thickness that could indicate potential impairments in reproductive organ function. Changes in tissue layer thickness were especially prominent in the luteal phase. This interaction between the treatment and the presence of a corpus luteum is noteworthy because tract function during the luteal phase is imperative for fertilization and early embryonic development.


Asunto(s)
Micotoxinas , Zearalenona , Porcinos , Animales , Femenino , Zearalenona/toxicidad , Sus scrofa
8.
J Exp Zool A Ecol Integr Physiol ; 339(3): 269-283, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36567430

RESUMEN

In snakes, the skin serves for protection, camouflage, visual signaling, locomotion, and its ability to stretch facilitates large prey ingestion. The flying snakes of the genus Chrysopelea are capable of jumping and gliding through the air, requiring additional functional demands: its skin must accommodate stretch in multiple directions during gliding and, perhaps more importantly, during high-speed, direct-impact landing. Is the skin of flying snakes specialized for gliding? Here, we characterized the material properties of the skin of Chrysopelea ornata and compared them with two nongliding species of colubrid snakes, Thamnophis sirtalis and Pantherophis guttatus, as well as with previously published values. The skin was examined using uniaxial tensile testing to measure stresses, and digital image correlation methods to determine strains, yielding metrics of strength, elastic modulus, strain energy, and extensibility. To test for loading orientation effects, specimens were tested from three orientations relative to the snake's long axis: lateral, circumferential, and ventral. Specimens were taken from two regions of the body, pre- and pos-tpyloric, to test for regional effects related to the ingestion of large prey. In comparison with T. sirtalis and P. guttatus, C. ornata exhibited higher post-pyloric and lower pre-pyloric extensibility in circumferential specimens. However, overall there were few differences in skin material properties of C. ornata compared to other species, both within and across studies, suggesting that the skin of flying snakes is not specialized for gliding locomotion. Surprisingly, circumferential specimens demonstrated lower strength and extensibility in pre-pyloric skin, suggesting less regional specialization related to large prey.


Asunto(s)
Colubridae , Animales , Colubridae/fisiología , Vuelo Animal , Locomoción
9.
Int J Numer Method Biomed Eng ; 39(1): e3660, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333869

RESUMEN

The vagina undergoes large finite deformations and has complex geometry and microstructure, resulting in material and geometric nonlinearities, complicated boundary conditions, and nonhomogeneities within finite element (FE) simulations. These nonlinearities pose a significant challenge for numerical solvers, increasing the computational time by several orders of magnitude. Simplifying assumptions can reduce the computational time significantly, but this usually comes at the expense of simulation accuracy. This study proposed the use of reduced order modeling (ROM) techniques to capture experimentally measured displacement fields of rat vaginal tissue during inflation testing in order to attain both the accuracy of higher-fidelity models and the speed of simpler simulations. The proper orthogonal decomposition (POD) method was used to extract the significant information from FE simulations generated by varying the luminal pressure and the parameters that introduce the anisotropy in the selected constitutive model. A new data-driven (DD) variational multiscale (VMS) ROM framework was extended to obtain the displacement fields of rat vaginal tissue under pressure. For comparison purposes, we also investigated the classical Galerkin ROM (G-ROM). In our numerical study, both the G-ROM and the DD-VMS-ROM decreased the FE computational cost by orders of magnitude without a significant decrease in numerical accuracy. Furthermore, the DD-VMS-ROM improved the G-ROM accuracy at a modest computational overhead. Our numerical investigation showed that ROM has the potential to provide efficient and accurate computational tools to describe vaginal deformations, with the ultimate goal of improving maternal health.


Asunto(s)
Análisis de Elementos Finitos , Animales , Ratas , Simulación por Computador
10.
Integr Comp Biol ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35781491

RESUMEN

The vagina is a highly inhomogeneous, anisotropic, and viscoelastic organ that undergoes significant deformations in vivo. The mechanical attributes of this organ facilitate important physiological functions during menstruation, intercourse, and birthing. Despite the crucial mechanical role that the vagina plays within the female reproductive system, the deformations that the organ can sustain over time under constant pressure, in both the longitudinal direction (LD) and circumferential direction (CD), have not been fully characterized. This experimental study focuses on quantifying the creep properties of the vagina via ex vivo inflation testing using the rat as animal model. Toward this end, rat vaginas were subjected to three consecutively increasing constant luminal pressures (28 kPa, 55 kPa, and 83 kPa) using a custom-built experimental setup and the resulting inhomogeneous deformations were measured using the digital image correlation (DIC) method. The vagina was found to deform significantly more in the CD than the LD at any constant pressure, suggesting that the organ primarily adapts to constant pressures by significantly changing the diameter rather that the length. The change in deformation over time (i.e., creep) was significantly higher during the 1st inflation test at a constant pressure of 28 kPa than over the 2nd and 3rd inflation tests at constant pressures of 55 kPa and 83 kPa, respectively. The findings of this study on the mechanical behavior of the vagina could serve to advance our limited knowledge about the physiology and pathophysiology of this important reproductive organ.

13.
J Mech Behav Biomed Mater ; 131: 105249, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526346

RESUMEN

The uterosacral ligaments (USLs) are supportive structures of the uterus and apical vagina. The mechanical function of these ligaments within the pelvic floor is crucial not only in normal physiological conditions but also in reconstructive surgeries for pelvic organ prolapse. Discrepancies in their anatomical and histological description exist in the literature, but such discrepancies are likely due to large variations of these structures. This makes mechanical testing very challenging, requiring the development of advanced methods for characterizing their mechanical properties. This study proposes the use of planar biaxial testing, digital image correlation (DIC), and optical coherence tomography (OCT) to quantify the deformations of the USLs, both in-plane and out-of-plane. Using the gilts as an animal model, the USLs were found to deform significantly less in their main direction (MD) of in vivo loading than in the direction perpendicular to it (PD) at increasing equibiaxial stresses. Under constant equibiaxial loading, the USLs deform over time equally, at comparable rates in both the MD and PD. The thickness of the USLs decreases as the equibiaxial loading increases but, under constant equibiaxial loading, the thickness increases in some specimens and decreases in others. These findings could contribute to the design of new mesh materials that augment the support function of USLs as well as noninvasive diagnostic tools for evaluating the integrity of the USLs.


Asunto(s)
Prolapso de Órgano Pélvico , Útero , Animales , Femenino , Ligamentos/diagnóstico por imagen , Ligamentos/fisiología , Ligamentos Articulares , Diafragma Pélvico/fisiología , Prolapso de Órgano Pélvico/diagnóstico por imagen , Sus scrofa , Porcinos , Útero/patología , Vagina
14.
J Biomed Opt ; 27(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102730

RESUMEN

SIGNIFICANCE: The spatial organization of collagen fibers has been used as a biomarker for assessing injury and disease progression. However, quantifying this organization for complex structures is challenging. AIM: To quantify and classify complex collagen fiber organizations. APPROACH: Using quantitative second-harmonic generation (SHG) microscopy, we show that collagen-fiber orientation can be viewed as pseudovector fields. Subsequently, we analyze them using fluid mechanic metrics, such as energy U, enstrophy E, and tortuosity τ. RESULTS: We show that metrics used in fluid mechanics for analyzing fluid flow can be adapted to analyze complex collagen fiber organization. As examples, we consider SHG images of collagenous tissue for straight, wavy, and circular fiber structures. CONCLUSIONS: The results of this study show the utility of the chosen metrics to distinguish diverse and complex collagen organizations. We find that the distribution of values for E and U increases with collagen fiber disorganization, where they divide between low and high values corresponding to uniformly aligned fibers and disorganized collagen fibers, respectively. We also confirm that the values of τ cluster around 1 when the fibers are straight, and the range increases up to 1.5 when wavier fibers are present.


Asunto(s)
Colágeno , Matriz Extracelular , Piel
15.
J Biomech Eng ; 143(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494082

RESUMEN

The vagina is a viscoelastic fibromuscular organ that provides support to the pelvic organs. The viscoelastic properties of the vagina are understudied but may be critical for pelvic stability. Most studies evaluate vaginal viscoelasticity under a single uniaxial load; however, the vagina is subjected to dynamic multiaxial loading in the body. It is unknown how varied multiaxial loading conditions affect vaginal viscoelastic behavior and which microstructural processes dictate the viscoelastic response. Therefore, the objective was to develop methods using extension-inflation protocols to quantify vaginal viscoelastic creep under various circumferential and axial loads. Then, the protocol was applied to quantify vaginal creep and collagen microstructure in the fibulin-5 wildtype and haploinsufficient vaginas. To evaluate pressure-dependent creep, the fibulin-5 wildtype and haploinsufficient vaginas (n = 7/genotype) were subjected to various constant pressures at the physiologic length for 100 s. For axial length-dependent creep, the vaginas (n = 7/genotype) were extended to various fixed axial lengths then subjected to the mean in vivo pressure for 100 s. Second-harmonic generation imaging was performed to quantify collagen fiber organization and undulation (n = 3/genotype). Increased pressure significantly increased creep strain in the wildtype, but not the haploinsufficient vagina. The axial length did not significantly affect the creep rate or strain in both genotypes. Collagen undulation varied through the depth of the subepithelium but not between genotypes. These findings suggest that the creep response to loading may vary with biological processes and pathologies, therefore, evaluating vaginal creep under various circumferential loads may be important to understand vaginal function.


Asunto(s)
Haploinsuficiencia , Vagina , Animales , Elasticidad , Femenino , Ratones , Pelvis , Estrés Mecánico , Viscosidad
17.
Acta Biomater ; 129: 178-187, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34033971

RESUMEN

The ability of the vagina to contract gives rise to a set of active mechanical properties that contribute to the complex function of this organ in-vivo. Regional differences in the morphology of the vagina have been long recognized, but the large heterogeneous deformations that the vagina experiences during contractions have never been quantified. Furthermore, there is no consensus regarding differences in contractility along the two primary anatomical directions of the vagina: the longitudinal direction (LD) and the circumferential direction (CD). In this study, square vaginal specimens from healthy virgin rats (n=15) were subjected to isometric planar biaxial tests at four equi-biaxial stretches of 1.0, 1.1, 1.2, and 1.3. Contractions were induced at each stretch by a high concentration potassium solution. The digital image correlation method was used to perform full-field strain measurements during contractions. The vagina was found to undergo significantly higher compressive strains, tensile strains, and contractile forces along the LD than along the CD during contractions. Specifically, when computed over all the applied equi-biaxial stretches, mean (± std. dev.) absolute maximum compressive strains were -(13.43 ± 1.56)% along the LD and -(3.19 ± 0.25)% along the CD, mean absolute maximum tensile strains were (10.92 ± 1.73)% along the LD and (3.62 ± 0.57)% along the CD, and mean maximum contractile forces were 6.24 ± 0.55 mN along the LD and 3.35 ± 0.56 mN along the CD. Moreover, the vaginal tissue appeared to undergo compression in the proximal region and tension in the distal region while kept at constant equi-biaxial stretches. The active mechanical properties of the healthy vagina need to be fully investigated so that detrimental alterations in vaginal contractility, such as those caused by pelvic floor disorders and current treatment strategies, can be prevented. STATEMENT OF SIGNIFICANCE: Contractile forces of the vagina have been measured by several investigators using uniaxial tensile testing methods. Unlike previous studies, in this study planar-biaxial tests of vaginal specimens were performed while the full-field strains of the vagina, as induced by smooth muscle contraction, were measured. The vagina was found to generate significantly larger contractile strains and forces in the longitudinal direction than in the circumferential direction. Knowledge of the contractile mechanics of the healthy vagina is essential to understand the detrimental effects that pelvic organ prolapse and the use of surgical meshes have on the functionality of smooth muscle in the vagina.


Asunto(s)
Prolapso de Órgano Pélvico , Vagina , Animales , Femenino , Fenómenos Mecánicos , Contracción Muscular , Músculo Liso , Ratas
18.
Acta Biomater ; 127: 193-204, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831574

RESUMEN

Vaginal tearing at childbirth is extremely common yet understudied despite the long-term serious consequences on women's health. The mechanisms of vaginal tearing remain unknown, and their knowledge could lead to the development of transformative prevention and treatment techniques for maternal injury. In this study, whole rat vaginas with pre-imposed elliptical tears oriented along the axial direction of the organs were pressurized using a custom-built inflation setup, producing large tear propagation. Large deformations of tears through propagation were analyzed, and nonlinear strains around tears were calculated using the digital image correlation technique. Second harmonic generation microscopy was used to examine collagen fiber organization in mechanically untested and tested vaginal specimens. Tears became increasingly circular under pressure, propagating slowly up to the maximum pressure and then more rapidly. Hoop strains were significantly larger than axial strains and displayed a region- and orientation-dependent response with tear propagation. Imaging revealed initially disorganized collagen fibers that aligned along the axial direction with increasing pressure. Fibers in the near-regions of tear tips aligned toward the hoop direction, hampering tear propagation. Changes in tear geometry, regional strains, and fiber orientation revealed the inherent toughening mechanisms of the vaginal tissue. STATEMENT OF SIGNIFICANCE: Women's reproductive health has historically been understudied despite alarming maternal injury and mortality rates in the world. Maternal injury and disability can be reduced by advancing our limited understanding of the large deformations experienced by women's reproductive organs. This manuscript presents, for the first time, the mechanics of tear propagation in vaginal tissue and changes to the underlying collagen microstructure near to and far from the tear. A novel inflation setup capable of maintaining the in vivo tubular geometry of the vagina while propagating a pre-imposed tear was developed. Toughening mechanisms of the vagina to propagation were examined through measurements of tear geometry, strain distributions, and reorientation of collagen fibers. This research draws from current advances in the engineering science and mechanics fields with the goal of improving maternal health care.


Asunto(s)
Laceraciones , Animales , Femenino , Ratas , Rotura , Estrés Mecánico , Vagina
19.
Ann Biomed Eng ; 49(8): 1788-1804, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33754254

RESUMEN

The uterosacral ligaments (USLs) are important anatomical structures that support the uterus and apical vagina within the pelvis. As these structures are over-stretched, become weak, and exhibit laxity, pelvic floor disorders such as pelvic organ prolapse occur. Although several surgical procedures to treat pelvic floor disorders are directed toward the USLs, there is still a lot that is unknown about their function. This manuscript presents a review of the current knowledge on the mechanical properties of the USLs. The anatomy, microstructure, and clinical significance of the USLs are first reviewed. Then, the results of published experimental studies on the in vivo and ex vivo, uniaxial and biaxial tensile tests are compiled. Based on the existing findings, research gaps are identified and future research directions are discussed. The purpose of this exhaustive review is to help new researchers navigate scientific literature on the mechanical properties of the USLs. The use of these structures remains very popular in reconstructive surgeries that restore and augment the support of pelvic organs, especially as synthetic surgical mesh implants continue to be highly controversial.


Asunto(s)
Ligamentos , Prolapso de Órgano Pélvico , Mallas Quirúrgicas , Útero , Vagina , Animales , Femenino , Humanos , Ligamentos/fisiopatología , Ligamentos/cirugía , Prolapso de Órgano Pélvico/fisiopatología , Prolapso de Órgano Pélvico/cirugía , Útero/fisiopatología , Útero/cirugía , Vagina/fisiopatología , Vagina/cirugía
20.
Toxicon X ; 8: 100058, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33089147

RESUMEN

The mycotoxin zearalenone (ZEN) is a common contaminant of swine feed which has been related to a wide range of reproductive anomalies in swine, such as pelvic organ prolapse, anestrous, and pseudopregnancy. New information is needed to understand how ZEN and related metabolites accumulate in swine reproductive tissues. We conducted a feeding study to track ZEN and the metabolite α-zearalenol (α-ZEL) in swine liver and reproductive tissues. Thirty pubertal gilts were randomly assigned one of three treatments, with ten pigs in each treatment group: (1) base feed with solvent for 21 days, (2) ZEN-spiked feed for seven days followed by base feed with solvent for 14 days, and (3) ZEN-spiked feed for 21 days. At the end of the trial, liver, anterior vagina, posterior vagina, cervix, uterus, ovaries, and broad ligament were collected from pigs. ZEN was found in the anterior vagina, posterior vagina, cervix, and ovaries, with significantly higher concentrations in the cervix relative to other reproductive tissues. ZEN and α-ZEL were found in liver tissue from pigs in each treatment group. Our results show that ZEN accumulates more in the cervix than other reproductive tissues. The presence of ZEN in reproductive tissues may be indicative of ZEN-related reproductive symptoms. Future work could examine how ZEN concentrations vary in reproductive tissues as a factor of the pigs age, weight, sex, or parity, to establish parameters that make pig more sensitive to ZEN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...