Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
EBioMedicine ; 104: 105182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838470

RESUMEN

BACKGROUND: Human milk oligosaccharides (HMOs), their determinants, infant gut microbiota and health are under extensive research; however, seldom jointly addressed. Leveraging data from the HELMi birth cohort, we investigated them collectively, considering maternal and infant secretor status. METHODS: HMO composition in breastmilk collected 3 months postpartum (n = 350 mothers) was profiled using high-performance liquid chromatography. Infant gut microbiota taxonomic and functional development was studied at 3, 6, and 12 months (n = 823 stool samples) via shotgun metagenomic sequencing, focusing on HMO metabolism via glycoside hydrolase (GH) analysis. Maternal and infant secretor statuses were identified through phenotyping and genotyping, respectively. Child health, emphasizing allergies and antibiotics as proxies for infectious diseases, was recorded until 2 years. FINDINGS: Mother's parity, irritable bowel syndrome, gestational diabetes, and season of milk collection associated with HMO composition. Neither maternal nor infant secretor status associated with infant gut microbiota, except for a few taxa linked to individual HMOs. Analysis stratified for birth mode revealed distinct patterns between the infant gut microbiota and HMOs. Child health parameters were not associated to infant or maternal secretor status. INTERPRETATION: This comprehensive exploration unveils intricate links between secretor genotype, maternal factors, HMO composition, infant microbiota, and child health. Understanding these nuanced relationships is paramount for refining strategies to optimize early life nutrition and its enduring impact on long-term health. FUNDING: Sweet Crosstalk EU H2020 MSCA ITN, Academy of Finland, Mary and Georg C. Ehrnrooth Foundation, Päivikki and Sakari Sohlberg Foundation, and Tekes.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Oligosacáridos , Paridad , Estaciones del Año , Humanos , Leche Humana/química , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/análisis , Femenino , Finlandia , Lactante , Cohorte de Nacimiento , Metagenómica/métodos , Embarazo , Recién Nacido , Adulto , Metagenoma , Masculino , Heces/microbiología
2.
Nat Microbiol ; 9(7): 1812-1827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858593

RESUMEN

Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.


Asunto(s)
Microbioma Gastrointestinal , Ácido Fítico , Ácido Fítico/metabolismo , Humanos , Animales , Ratones , Células CACO-2 , Clostridiales/metabolismo , Clostridiales/genética , Ácidos Grasos Volátiles/metabolismo , Propionatos/metabolismo , Interacciones Microbianas , Redes y Vías Metabólicas , Metabolómica/métodos , Inositol/metabolismo , Inositol/análogos & derivados
3.
Imeta ; 3(2): e181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882496

RESUMEN

Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.

4.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853964

RESUMEN

Alterations in the intestinal microbiota contribute to the pathogenesis of various cardiovascular disorders, but how they affect the development of Kawasaki disease (KD), an acute pediatric vasculitis, remains unclear. We report that depleting the gut microbiota reduces the development of cardiovascular inflammation in a murine model mimicking KD vasculitis. The development of cardiovascular lesions was associated with alterations in the intestinal microbiota composition and, notably, a decreased abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii. Oral supplementation with either of these live or pasteurized individual bacteria, or with short-chain fatty acids (SCFAs) produced by them, attenuated cardiovascular inflammation. Treatment with Amuc_1100, the TLR-2 signaling outer membrane protein from A. muciniphila , also decreased the severity of vascular inflammation. This study reveals an underappreciated gut microbiota-cardiovascular inflammation axis in KD vasculitis pathogenesis and identifies specific intestinal commensals that regulate vasculitis in mice by producing metabolites or via extracellular proteins acting on gut barrier function. IN BRIEF: It remains unclear whether changes in the intestinal microbiota composition are involved in the development of cardiovascular lesions associated with Kawasaki disease (KD), an immune-mediated vasculitis. Jena et al. observe alterations in the intestinal microbiota composition of mice developing vasculitis, characterized by reduced A. muciniphila and F. prausnitzii . Oral supplementation with either of these bacteria, live or pasteurized, or with bacteria-produced short-chain fatty acids (SCFAs) or Amuc_1100, the TLR-2 signaling outer membrane protein of A. muciniphila , was sufficient to alleviate the development of cardiovascular lesions in mice by promoting intestinal barrier function. HIGHLIGHTS: Absence or depletion of the microbiota decreases the severity of vasculitis in a murine model mimicking KD vasculitis. Supplementation of B. wadsworthia and B. fragilis promotes murine KD vasculitis. Decreased abundances of F. prausnitzii and A. muciniphila are associated with the development of cardiovascular lesions in mice. Supplementation with either live or pasteurized A. muciniphila and F. prausnitzii, or the TLR-2 signaling Amuc_1100, reduces the severity of vasculitis by promoting gut barrier function.

5.
Cell Host Microbe ; 32(6): 1011-1024.e4, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870892

RESUMEN

Microbial colonization of the neonatal gut involves maternal seeding, which is partially disrupted in cesarean-born infants and after intrapartum antibiotic prophylaxis. However, other physically close individuals could complement such seeding. To assess the role of both parents and of induced seeding, we analyzed two longitudinal metagenomic datasets (health and early life microbiota [HELMi]: N = 74 infants, 398 samples, and SECFLOR: N = 7 infants, 35 samples) with cesarean-born infants who received maternal fecal microbiota transplantation (FMT). We found that the father constitutes a stable source of strains for the infant independently of the delivery mode, with the cumulative contribution becoming comparable to that of the mother after 1 year. Maternal FMT increased mother-infant strain sharing in cesarean-born infants, raising the average bacterial empirical growth rate while reducing pathogen colonization. Overall, our results indicate that maternal seeding is partly complemented by that of the father and support the potential of induced seeding to restore potential deviations in this process.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Femenino , Masculino , Recién Nacido , Lactante , Padre , Madres , Heces/microbiología , Cesárea , Embarazo , Transmisión Vertical de Enfermedad Infecciosa , Bacterias/genética
6.
Lancet Microbe ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38909617

RESUMEN

BACKGROUND: Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts. METHODS: In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards. FINDINGS: We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities. INTERPRETATION: Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections. FUNDING: Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.

7.
Gut Microbes ; 16(1): 2350173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738780

RESUMEN

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , Intestino Delgado , Simbióticos , Humanos , Simbióticos/administración & dosificación , Microbioma Gastrointestinal/fisiología , Masculino , Adulto , Intestino Delgado/microbiología , Intestino Delgado/metabolismo , Femenino , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Heces/microbiología , Adulto Joven , Probióticos/administración & dosificación , Metaboloma , Voluntarios Sanos , Análisis Espacio-Temporal
8.
Nat Commun ; 15(1): 4582, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811534

RESUMEN

The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited. Here, we first show that the mucin-binding properties of A. muciniphila are independent of environmental oxygen concentrations and not abolished by pasteurization. We then dissected the mucin-binding properties of pasteurized A. muciniphila by use of a recently developed cell-based mucin array that enables display of the tandem repeats of human mucins with distinct O-glycan patterns and structures. We found that A. muciniphila recognizes the unsialylated LacNAc (Galß1-4GlcNAcß1-R) disaccharide selectively on core2 and core3 O-glycans. This disaccharide epitope is abundantly found on human colonic mucins capped by sialic acids, and we demonstrated that endogenous A. muciniphila neuraminidase activity can uncover the epitope and promote binding. In summary, our study provides insights into the mucin-binding properties important for colonization of a key mucin-foraging bacterium.


Asunto(s)
Akkermansia , Mucinas , Polisacáridos , Akkermansia/metabolismo , Humanos , Mucinas/metabolismo , Polisacáridos/metabolismo , Neuraminidasa/metabolismo , Unión Proteica , Glicosilación , Disacáridos/metabolismo , Verrucomicrobia/metabolismo , Epítopos/metabolismo , Adhesión Bacteriana
9.
Res Sq ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746233

RESUMEN

Background: There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results: We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions: These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.

10.
Eur J Pediatr ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819500

RESUMEN

The purpose of this study is to describe the defecation pattern of healthy infants up to 17 weeks of age. We included 1052 healthy term infants from the prospective HELMi cohort (NCT03996304). Parents filled in recurring online questionnaires on feeding, gastrointestinal function, and crying weekly for the first 17 weeks of life. Defecation frequency was highest at the age of 3 weeks (a median of 4 times/day, interquartile range (IQR) 2.9-5). At each time point, the median defecation frequency of breastfed infants was higher than that of infants receiving formula (e.g., at week 17 a median of 2 times/day, IQR 0.9-3.6, and a median of 1.1, IQR 0.6-1.4, respectively). The dominant color of the stool was most often yellow or light brown. Nearly black stools were reported in the first week of life in 3.4%. Nearly half (47.4%) of the infants had green stool color dominating for at least 1 week, with comparable frequency among breastfed (47.7%) and formula-fed (45.2%) infants. Green stools were associated with a higher defecation frequency (linear mixed-effect model p < 0.0001). Occasional blood in stool was reported in 9.3% and recurrent blood in 5.2% of the infants with no difference in stool consistency. Hard stools were rare (≤ 1%).     Conclusion: This study enlightens the spectrum of defecation patterns in healthy term infants during the first 17 weeks of life. A better understanding of bowel function helps healthcare professionals distinguish normal from abnormal when addressing defecation, the color of stools, and the type of feeding. What is Known: • Breastfed infants have more frequent and more yellow-colored stools than formula-fed infants. • Stools with green color are often suggested by the parents or even by medical professionals to indicate disease or discomfort in early life. What is New: • Nearly half of the healthy term infants had green stool dominating for at least one week during the first 17 weeks and occasional blood was reported in almost 10% of the infants during this period. • Data on normal variation in bowel function and stool may serve primary health care professionals when educating the families and caretakers of infants.

11.
Microbiol Spectr ; 12(6): e0413523, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687061

RESUMEN

Perinatal and early-life factors reported to affect risk of allergic diseases may be mediated by changes in the gut microbiota. Here, we explored the associations between the infant gut microbiota and allergic morbidity in childhood until 13 years of age in a subgroup of the FLORA probiotic intervention cohort. A mixture of four probiotic strains with galacto-oligosaccharides was administrated to the mothers from the 36th week of the pregnancy and later to their infants until 6 months of age. The infants were monitored for the manifestations of atopic eczema, food allergy, allergic rhinitis, and asthma by a pediatrician at 2 and 5 years of age; the allergic status was subsequently verified by a questionnaire at 10 and 13 years of age. The fecal microbiota at 3 months was profiled by 16S rRNA amplicon sequencing targeting the V3-V4 region, with and without adjusting for potentially important early-life factors. Overall, the positive diagnosis for allergic rhinitis between 2 and 13 years was associated with microbiota composition both in non-adjusted and adjusted models. This association was more pronounced in children born to one parent with confirmed atopic diseases compared to those who had two atopic parents and was characterized by a lower relative abundance of Bifidobacterium and Escherichia/Shigella spp. and a higher proportion of Bacteroides. While the probiotic and galacto-oligosaccharides intervention in the entire cohort was previously shown to reduce the prevalence of eczema to a certain extent, no associations were found between the 3-month gut microbiota and childhood eczema in the studied sub-cohort.IMPORTANCEAllergic diseases have increased in prevalence during the past decades globally. Although probiotics have been considered a promising strategy for preventing certain allergy related symptoms, studies connecting the infant gut microbiota and later life allergic morbidity in various populations remain limited. The present study supports an association between the infant microbiota and allergic morbidity after first years of life, which has been rarely examined.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT00298337).


Asunto(s)
Heces , Microbioma Gastrointestinal , Probióticos , Rinitis Alérgica , Humanos , Probióticos/administración & dosificación , Rinitis Alérgica/microbiología , Femenino , Finlandia/epidemiología , Adolescente , Preescolar , Masculino , Lactante , Niño , Estudios de Seguimiento , Heces/microbiología , ARN Ribosómico 16S/genética , Embarazo , Recién Nacido , Estudios de Cohortes , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
12.
Gut Pathog ; 16(1): 20, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581020

RESUMEN

BACKGROUND: Intestinal botulism is primarily reported in small babies as a condition known as infant botulism. The condition results from the ingestion of environmental or foodborne spores of botulinum neurotoxin (BoNT) producing Clostridia, usually Clostridium botulinum, and subsequent spore germination into active botulinum neurotoxinogenic cultures in the gut. It is generally considered that small babies are susceptible to C. botulinum colonization because of their immature gut microbiota. Yet, it is poorly understood which host factors contribute to the clinical outcome of intestinal botulism. We previously reported a case of infant botulism where the infant recovered clinically in six weeks but continued to secrete C. botulinum cells and/or BoNT in the feces for seven months. CASE PRESENTATION: To further understand the microbial ecology behind this exceptionally long-lasting botulinum neurotoxinogenic colonization, we characterized the infant fecal microbiota using 16S rRNA gene amplicon sequencing over the course of disease and recovery. C. botulinum could be detected in the infant fecal samples at low levels through the acute phase of the disease and three months after recovery. Overall, we observed a temporal delay in the maturation of the infant fecal microbiota associated with a persistently high-level bifidobacterial population and a low level of Lachnospiraceae, Bacteroidaceae and Ruminococcaceae compared to healthy infants over time. CONCLUSION: This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.

13.
Chembiochem ; : e202400037, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688858

RESUMEN

Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.

15.
Biomed Pharmacother ; 174: 116561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593705

RESUMEN

Pectin and its derivatives have been shown to modulate immune signaling as well as gut microbiota in preclinical studies, which may constitute the mechanisms by which supplementation of specific pectic polysaccharides confers protection against viral respiratory infections. In a double-blind, placebo-controlled rhinovirus (RV16) challenge study, healthy volunteers were randomized to consume placebo (0.0 g/day) (N = 46), low-dose (0.3 g/day) (N = 49) or high-dose (1.5 g/day) (N = 51) of carrot derived rhamnogalacturonan-I (cRG-I) for eight weeks and they were subsequently challenged with RV-16. Here, the effect of 8-week cRG-I supplementation on the gut microbiota was studied. While the overall gut microbiota composition in the population was generally unaltered by this very low dose of fibre, the relative abundance of Bifidobacterium spp. (mainly B. adolescentis and B. longum) was significantly increased by both doses of cRG-1. Moreover, daily supplementation of cRG-I led to a dose-dependent reduction in inter- and intra-individual microbiota heterogeneity, suggesting a stabilizing effect on the gut microbiota. The severity of respiratory symptoms did not directly correlate with the cRG-I-induced microbial changes, but several dominant groups of the Ruminococcaceae family and microbiota richness were positively associated with a reduced and hence desired post-infection response. Thus, the present results on the modulation of the gut microbiota composition support the previously demonstrated immunomodulatory and protective effect of cRG-I during a common cold infection.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Voluntarios Sanos , Pectinas , Humanos , Pectinas/administración & dosificación , Pectinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Adulto , Método Doble Ciego , Femenino , Adulto Joven , Rhinovirus/efectos de los fármacos , Persona de Mediana Edad , Heces/microbiología , Bifidobacterium/efectos de los fármacos
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542455

RESUMEN

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.


Asunto(s)
Clostridiales , Hígado Graso , Enfermedades Metabólicas , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Composición de Base , Gluconeogénesis , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Hígado Graso/etiología , Hígado Graso/genética , Butiratos , Expresión Génica , Fosfatidato Fosfatasa
17.
Nat Commun ; 15(1): 1791, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424056

RESUMEN

Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.


Asunto(s)
Neoplasias Colorrectales , Virus , Humanos , Viroma , Virus ADN/genética , Virus/genética , ADN , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética
18.
Gut Microbes ; 16(1): 2298026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170633

RESUMEN

Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Humanos , Ratones , Animales , Síndrome del Colon Irritable/terapia , Privación Materna , Verrucomicrobia/fisiología
19.
Proc Natl Acad Sci U S A ; 121(2): e2221791120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165929

RESUMEN

Using data from a wide range of natural communities including the human microbiome, plants, fish, mushrooms, rodents, beetles, and trees, we show that universally just a few percent of the species account for most of the biomass. This is in line with the classical observation that the vast bulk of biodiversity is very rare. Attempts to find traits allowing the tiny fraction of abundant species to escape rarity have remained unsuccessful. Here, we argue that this might be explained by the fact that hyper-dominance can emerge through stochastic processes. We demonstrate that in neutrally competing groups of species, rarity tends to become a trap if environmental fluctuations result in gains and losses proportional to abundances. This counter-intuitive phenomenon arises because absolute change tends to zero for very small abundances, causing rarity to become a "sticky state", a pseudoattractor that can be revealed numerically in classical ball-in-cup landscapes. As a result, the vast majority of species spend most of their time in rarity leaving space for just a few others to dominate the neutral community. However, fates remain stochastic. Provided that there is some response diversity, roles occasionally shift as stochastic events or natural enemies bring an abundant species down allowing a rare species to rise to dominance. Microbial time series spanning thousands of generations support this prediction. Our results suggest that near-neutrality within niches may allow numerous rare species to persist in the wings of the dominant ones. Stand-ins may serve as insurance when former key species collapse.


Asunto(s)
Ecosistema , Microbiota , Animales , Humanos , Biodiversidad , Biomasa , Árboles , Procesos Estocásticos
20.
Appl Environ Microbiol ; 90(1): e0112123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38088552

RESUMEN

Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.


Asunto(s)
Proteómica , Verrucomicrobia , Animales , Humanos , Verrucomicrobia/metabolismo , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Akkermansia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...