Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 900: 165756, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37499834

RESUMEN

The sea anemone Calliactis parasitica, which is found in the East Atlantic (Portugal to Senegal) and the Mediterranean Sea, forms a symbiotic relationship with the red hermit crab, Dardanus calidus, in which the anemone provides protection from predators such as the octopus while it gains mobility, and possibly food scraps, from the hermit crab. Acoustic pollution is recognised by the scientific community as a growing threat to ocean inhabitants. Recent findings on marine invertebrates showed that exposure to artificial sound had direct behavioural, physiological and ultrastructural consequences. In this study we assess the impact of artificial sound (received level 157 ± 5 dB re 1 µPa2 with peak levels up to 175 dB re 1 µPa2) on the red hermit crab and its symbiotic sea anemone. Scanning electron microscopy analyses revealed lesions in the statocyst of the red hermit crab and in the tentacle sensory epithelia of its anemone when exposed to low-intensity, low-frequency sounds. These ultrastructural changes under situations of acoustic stress in symbiotic partners belonging to different phyla is a new issue that may limit their survival capacity, and a new challenge in assessing the effects of acoustic disturbance in the oceanic ecosystem. Despite the lesions found in the red hermit crab, its righting reflex time was not as strongly affected showing only an increase in the range of righting times. Given that low-frequency sound levels in the ocean are increasing and that reliable bioacoustic data on invertebrates is very scarce, in light of the results of the present study, we argue that anthropogenic sound effects on invertebrates species may have direct consequences in the entire ecosystem.


Asunto(s)
Anomuros , Animales , Anomuros/fisiología , Ecosistema , Simbiosis , Mar Mediterráneo , Portugal
2.
Biol Open ; 12(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942843

RESUMEN

Although much research has focused on marine mammal sensory systems over the last several decades, we still lack basic knowledge for many of the species within this diverse group of animals. Our conference workshop allowed all participants to present recent developments in the field and culminated in discussions on current knowledge gaps. This report summarizes open questions regarding marine mammal sensory ecology and will hopefully serve as a platform for future research.


Asunto(s)
Organismos Acuáticos , Mamíferos , Sensación , Animales , Mamíferos/fisiología , Organismos Acuáticos/fisiología , Sensación/fisiología
3.
Sci Total Environ ; 873: 162260, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841409

RESUMEN

Underwater noise pollution is an increasing threat to marine ecosystems. Marine animals use sound in communication and orientation processes. The introduction of anthropogenic noise in their habitat can interfere with sound production and reception as well as with the acquisition of vital information through other sensory systems. In the blue crab (Callinectes sapidus), the statocyst is responsible for acoustic perception, and it is housed at the base of its first pair of antennae (antennule). The sensilla of the distal part of these antennule hosts the olfactory system, which is key for foraging. Given the anatomical proximity of the two sensory regions, we evaluated the possible interference of sound exposure with the crab ability to find food, by using an aquatic maze, and looked at the potential impairment of the righting reflex as well as at ultrastructural damages in statocysts. Although a significant effect was observed when looking at the time used by the animal to recover its habitual position ("righting reflex"), which was associated to lesions in the statocyst sensory epithelia, the time required to find food did not increase after the exposure to sound. When the crabs were exposed to natural sounds (marine background noise and sounds of their predators: Micropogonias undulates and Sciaenops ocellatus) they did not show significant differences in foraging behaviour. Although we found no unequivocal evidence of a negative impact of sound on olfactory capabilities, the study showed a clear righting reflex impairment correlated with ultrastructural damages of the statocysts. We argue that crab populations that cannot easily avoid noise sources due to their specific coastal distributions may incur in significant direct fitness costs (e.g. impairment of complex reflexes). This integrated approach to sound effect assessment could be used as a model for other invertebrate species to effectively monitor noise impact in marine environments.


Asunto(s)
Braquiuros , Ruido , Animales , Ruido/efectos adversos , Ecosistema , Sonido , Acústica
4.
Animals (Basel) ; 14(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38200796

RESUMEN

Cetaceans have undergone profound sensory adaptations in response to their aquatic environment during evolution. These adaptations are characterised by anatomo-functional changes in the classically defined sensory systems, shaping their neuroanatomy accordingly. This review offers a concise and up-to-date overview of our current understanding of the neuroanatomy associated with cetacean sensory systems. It encompasses a wide spectrum, ranging from the peripheral sensory cells responsible for detecting environmental cues, to the intricate structures within the central nervous system that process and interpret sensory information. Despite considerable progress in this field, numerous knowledge gaps persist, impeding a comprehensive and integrated understanding of their sensory adaptations, and through them, of their sensory perspective. By synthesising recent advances in neuroanatomical research, this review aims to shed light on the intricate sensory alterations that differentiate cetaceans from other mammals and allow them to thrive in the marine environment. Furthermore, it highlights pertinent knowledge gaps and invites future investigations to deepen our understanding of the complex processes in cetacean sensory ecology and anatomy, physiology and pathology in the scope of conservation biology.

5.
Animals (Basel) ; 12(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077961

RESUMEN

A changing marine environment with emerging natural and anthropogenic stressors challenges the marine mammal immune system. The skin and adnexa form a first protective barrier in the immune response, although this is still relatively understudied in cetaceans. The cellular and tissue morphology of the nodular and diffuse lymphoid tissue are not fully charted and the physiological responses are not yet completely understood. The odontocete's external ear canal has a complex relationship with the external environment, with an artificial lumen rendering the inside of the canal a relatively secluded environment. In this work, we studied the odontocete ear canal-associated lymphoid tissue (ECALT) by histo- and immunohistochemistry (HC, IHC) with anti-CD3, anti-CD20, anti-Iba-1, anti-HLA-DR, and anti-vimentin antibodies. The ECALT cellular composition consists mainly of B-lymphocytes with the occasional presence of T-lymphocytes and the dispersed distribution of the macrophages. In cases of activation, the cellular reaction showed a similar pattern with the occasional presence of T-cells, plasma cells, and neutrophils. Nodular lymphoid tissue was generally in line with the description in other odontocetes, although with abundant erythrocytes throughout the entire organ. This study contributes to the understanding of the cellular composition of diffuse and nodular lymphoid tissue in several species of odontocetes, and in association with inflammation of the external ear canal.

6.
Environ Pollut ; 312: 119853, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985436

RESUMEN

The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 µPa2 and 167 dB re 1 µPa2, respectively). However, sound pressure levels's lower than 163 dB re 1 µPa2 were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Estimulación Acústica , Animales , Decapodiformes , Larva , Ruido/efectos adversos , Sonido
7.
Commun Biol ; 4(1): 743, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131270

RESUMEN

The last hundred years have seen the introduction of many sources of artificial noise in the sea environment which have shown to negatively affect marine organisms. Little attention has been devoted to how much this noise could affect sessile organisms. Here, we report morphological and ultrastructural changes in seagrass, after exposure to sounds in a controlled environment. These results are new to aquatic plants pathology. Low-frequency sounds produced alterations in Posidonia oceanica root and rhizome statocysts, which sense gravity and process sound vibration. Nutritional processes of the plant were affected as well: we observed a decrease in the number of rhizome starch grains, which have a vital role in energy storage, as well as a degradation in the specific fungal symbionts of P. oceanica roots. This sensitivity to artificial sounds revealed how sound can potentially affect the health status of P. oceanica. Moreover, these findings address the question of how much the increase of ocean noise pollution may contribute in the future to the depletion of seagrass populations and to biodiversity loss.


Asunto(s)
Alismatales/fisiología , Ruido/efectos adversos , Raíces de Plantas/metabolismo , Almidón/biosíntesis , Alismatales/química , Alismatales/metabolismo , Humanos , Océanos y Mares
8.
J Anat ; 238(4): 942-955, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33099774

RESUMEN

Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.


Asunto(s)
Delfín Mular/anatomía & histología , Vibrisas/inervación , Animales , Animales Recién Nacidos , Evolución Biológica , Delfín Mular/crecimiento & desarrollo , Femenino , Masculino , Vibrisas/crecimiento & desarrollo
9.
Animals (Basel) ; 10(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322366

RESUMEN

Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.

10.
Sci Rep ; 10(1): 4191, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144309

RESUMEN

The function of the external ear canal in cetaceans is still under debate and its morphology is largely unknown. Immunohistochemical (IHC) analyses using antibodies specific for nervous tissue (anti-S100, anti-NSE, anti-NF, and anti-PGP 9.5), together with transmission electron microscopy (TEM) and various histological techniques, were carried out to investigate the peripheral nervous system of the ear canals of several species of toothed whales and terrestrial Cetartiodactyla. This study highlights the innervation of the ear canal with the presence of lamellar corpuscles over its entire course, and their absence in all studied terrestrial mammals. Each corpuscle consisted of a central axon, surrounded by lamellae of Schwann receptor cells, surrounded by a thin cellular layer, as shown by IHC and TEM. These findings indicate that the corpuscles are mechanoreceptors that resemble the inner core of Pacinian corpuscles without capsule or outer core, and were labelled as simple lamellar corpuscles. They form part of a sensory system that may represent a unique phylogenetic feature of cetaceans, and an evolutionary adaptation to life in the marine environment. Although the exact function of the ear canal is not fully clear, we provide essential knowledge and a preliminary hypothetical deviation on its function as a unique sensory organ.


Asunto(s)
Conducto Auditivo Externo/fisiología , Conducto Auditivo Externo/ultraestructura , Animales , Axones/fisiología , Axones/ultraestructura , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Corpúsculos de Pacini/fisiología , Corpúsculos de Pacini/ultraestructura , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Filogenia
11.
Sci Rep ; 8(1): 16882, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442965

RESUMEN

While the Greenland and Barents Seas are known habitats for several cetacean and pinniped species there is a lack of long-term monitoring data in this rapidly changing environment. Moreover, little is known of the ambient soundscapes, and increasing off-shore anthropogenic activities can influence the ecosystem and marine life. Baseline acoustic data is needed to better assess current and future soundscape and ecosystem conditions. The analysis of a year of continuous data from three passive acoustic monitoring devices revealed species-dependent seasonal and spatial variation of a large variety of marine mammals in the Greenland and Barents Seas. Sampling rates were 39 and 78 kHz in the respective locations, and all systems were operational at a duty cycle of 2 min on, 30 min off. The research presents a description of cetacean and pinniped acoustic detections along with a variety of unknown low-frequency tonal sounds, and ambient sound level measurements that fall within the scope of the European Marine Strategy Framework (MSFD). The presented data shows the importance of monitoring Arctic underwater biodiversity for assessing the ecological changes under the scope of climate change.


Asunto(s)
Acústica , Organismos Acuáticos/fisiología , Mamíferos/fisiología , Océanos y Mares , Estaciones del Año , Animales , Geografía , Groenlandia , Actividades Humanas , Ruido , Procesamiento de Señales Asistido por Computador , Sonido , Espectrografía del Sonido , Vocalización Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...