Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766162

RESUMEN

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive states are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation. Traditional channel protein reconstitution methods rely upon exogenous expression and/or purification from endogenous cellular sources which are frequently contaminated by resident ionophores. Here we describe a fully synthetic method to assay the functional properties of the polycystin subfamily of transient receptor potential (TRP) channels that natively traffic to primary cilia and endoplasmic reticulum organelles. Using this method, we characterize their membrane integration, orientation and conductance while comparing these results to their endogenous channel properties. Outcomes define a novel synthetic approach that can be applied broadly to investigate other channels resistant to biophysical analysis and pharmacological characterization.

2.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158562

RESUMEN

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Asunto(s)
Canales Catiónicos TRPP , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Canales Catiónicos TRPP/química , Transducción de Señal , Transporte Iónico , Canales de Potencial de Receptor Transitorio/genética , Mutación , Receptores de Superficie Celular/metabolismo , Canales de Calcio/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216541

RESUMEN

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Asunto(s)
Trastorno del Espectro Autista , Cilios , Ratones , Animales , Cilios/metabolismo , Trastorno del Espectro Autista/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Receptores de Superficie Celular/metabolismo , Canales de Calcio/metabolismo
4.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763973

RESUMEN

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Asunto(s)
Canales Catiónicos TRPP , Humanos , Calcio/metabolismo , Transducción de Señal , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo
5.
Cell Rep ; 40(8): 111248, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001977

RESUMEN

Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.


Asunto(s)
Tamoxifeno , Canales de Sodio Activados por Voltaje , Potenciales de Acción , Ganglios Espinales , Humanos , Nociceptores , Dolor/tratamiento farmacológico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
6.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33503406

RESUMEN

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Asunto(s)
Modelos Moleculares , Tamoxifeno/química , Canales de Sodio Activados por Voltaje/química , Células HEK293 , Humanos
7.
J Cell Sci ; 133(24)2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33199522

RESUMEN

Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Cilios/metabolismo , Motivos EF Hand , Ratones , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(19): 10329-10338, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332171

RESUMEN

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.


Asunto(s)
Calcio/metabolismo , Cilios/patología , Activación del Canal Iónico , Mutación , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/metabolismo , Cilios/metabolismo , Células HEK293 , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Dominios Proteicos , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
9.
Cell Signal ; 72: 109626, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32251715

RESUMEN

Variants in genes which encode for polycystin-1 and polycystin-2 cause most forms of autosomal dominant polycystic disease (ADPKD). Despite our strong understanding of the genetic determinants of ADPKD, we do not understand the structural features which govern the function of polycystins at the molecular level, nor do we understand the impact of most disease-causing variants on the conformational state of these proteins. These questions have remained elusive because polycystins localize to several organelle membranes, including the primary cilia. Primary cilia are microtubule based organelles which function as cellular antennae. Polycystin-2 and related polycystin-2 L1 are members of the transient receptor potential (TRP) ion channel family, and form distinct ion channels in the primary cilia of disparate cell types which can be directly measured. Polycystin-1 has both ion channel and adhesion G-protein coupled receptor (GPCR) features-but its role in forming a channel complex or as a channel subunit chaperone is undetermined. Nonetheless, recent polycystin structural determination by cryo-EM has provided a molecular template to understand their biophysical regulation and the impact of disease-causing variants. We will review these advances and discuss hypotheses regarding the regulation of polycystin channel opening by their structural domains within the context of the primary cilia.


Asunto(s)
Cilios/metabolismo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Animales , Señalización del Calcio , Progresión de la Enfermedad , Humanos , Dominios Proteicos
10.
Proc Natl Acad Sci U S A ; 116(52): 26549-26554, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822620

RESUMEN

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

11.
Proc Natl Acad Sci U S A ; 116(31): 15540-15549, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31315976

RESUMEN

The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Receptores de Superficie Celular/metabolismo , Canales de Calcio/genética , Células HEK293 , Humanos , Dominios Proteicos , Receptores de Superficie Celular/genética
12.
Elife ; 72018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443690

RESUMEN

Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins' functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium - a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.


Asunto(s)
Cationes/metabolismo , Cilios/química , Células Epiteliales/química , Túbulos Renales/química , Potasio/metabolismo , Sodio/metabolismo , Canales Catiónicos TRPP/análisis , Animales , Humanos , Ratones , Ratones Transgénicos
13.
Proc Natl Acad Sci U S A ; 114(30): E6079-E6088, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28696294

RESUMEN

TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles. M7Vs accumulate Zn2+ in a glutathione-enriched, reduced lumen when cytosolic Zn2+ concentrations are elevated. Treatments that increase reactive oxygen species (ROS) trigger TRPM7-dependent Zn2+ release from the vesicles, whereas reduced glutathione prevents TRPM7-dependent cytosolic Zn2+ influx. These observations strongly support the notion that ROS-mediated TRPM7 activation releases Zn2+ from intracellular vesicles after Zn2+ overload. Like the endoplasmic reticulum, these vesicles are a distributed system for divalent cation uptake and release, but in this case the primary divalent ion is Zn2+ rather than Ca2.


Asunto(s)
Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/metabolismo , Vesículas Transportadoras/metabolismo , Zinc/metabolismo , Desarrollo Embrionario , Glutatión/metabolismo , Células HEK293 , Humanos , Especies Reactivas de Oxígeno/metabolismo
14.
FASEB J ; 31(7): 3167-3178, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28400471

RESUMEN

Voltage-gated sodium channels (NaVs) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial NaVs have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial NaVs. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic NaVs NsVBa (nonselective voltage-gated Bacillus alcalophilus) and NaChBac (bacterial sodium channel from Bacillus halodurans) (IC50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of NsVBa, whereas the local anesthetic drug lidocaine was shown to antagonize NsVBa without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of NsVBa, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of NsVBa in one of the deactivated states. In mammalian NaVs, JZTx-27 preferably inhibited the inactivation of NaV1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic NaVs. More important, we proposed that JZTx-27 stabilized the NsVBa VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of NaVs.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.


Asunto(s)
Bacillus/metabolismo , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Fenómenos Electrofisiológicos , Humanos , Unión Proteica , Conformación Proteica , Arañas/fisiología
15.
Nat Commun ; 8: 14205, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205548

RESUMEN

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.


Asunto(s)
Agonistas de los Canales de Sodio/química , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/fisiología , Secuencia de Aminoácidos , Electrofisiología , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/fisiología , Cinética , Modelos Moleculares , Mutación , Células Procariotas/química , Células Procariotas/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/genética , Difracción de Rayos X
16.
J Gen Physiol ; 149(1): 37-47, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999145

RESUMEN

Mammalian cilia are ubiquitous appendages found on the apical surface of cells. Primary and motile cilia are distinct in both morphology and function. Most cells have a solitary primary cilium (9+0), which lacks the central microtubule doublet characteristic of motile cilia (9+2). The immotile primary cilia house unique signaling components and sequester several important transcription factors. In contrast, motile cilia commonly extend into the lumen of respiratory airways, fallopian tubes, and brain ventricles to move their contents and/or produce gradients. In this review, we focus on the composition of putative ion channels found in both types of cilia and in the periciliary membrane and discuss their proposed functions. Our discussion does not cover specialized cilia in photoreceptor or olfactory cells, which express many more ion channels.


Asunto(s)
Cilios/fisiología , Canales Iónicos/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Activación del Canal Iónico/fisiología
17.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768895

RESUMEN

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/química , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Microscopía por Crioelectrón , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Mutación Missense , Nanoestructuras/química , Riñón Poliquístico Autosómico Dominante/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos , Canales Catiónicos TRPP/genética
18.
Elife ; 52016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27348301

RESUMEN

Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium.


Asunto(s)
Calcio/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Motivos EF Hand , Humanos , Transporte Iónico , Proteínas de la Membrana/química , Modelos Biológicos
19.
EMBO J ; 35(8): 820-30, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873592

RESUMEN

Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na(+) ≈ Li(+) â‰« K(+), Ca(2+), Mg(2+)) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.


Asunto(s)
Canales de Sodio/química , Canales de Sodio/metabolismo , Sodio/metabolismo , Alphaproteobacteria/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cationes/metabolismo , Cristalografía por Rayos X , Ácido Glutámico/genética , Células HEK293 , Humanos , Activación del Canal Iónico , Modelos Moleculares , Mutación , Técnicas de Placa-Clamp , Permeabilidad , Conformación Proteica , Canales de Sodio/genética , Electricidad Estática
20.
Elife ; 32014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25385530

RESUMEN

Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na(+) to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na(+) channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na(+), Ca(2+) and K(+) ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na(+) or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels.


Asunto(s)
Adaptación Biológica/efectos de los fármacos , Bacillus/fisiología , Familia de Multigenes , Temperatura , Canales de Sodio Activados por Voltaje/metabolismo , Álcalis/farmacología , Secuencia de Aminoácidos , Bacillus/efectos de los fármacos , Bacillus/crecimiento & desarrollo , Cationes , Permeabilidad de la Membrana Celular , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Movimiento/efectos de los fármacos , Mutación/genética , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...