Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 74(3): 230-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21185079

RESUMEN

Copper-induced toxicity in aqueous systems depends on its speciation and bioavailability. Natural organic matter (NOM) and reduced sulphur species can complex copper, influencing speciation and decreasing bioavailability. NOM composition in estuaries can vary, depending on inputs of terrigenous, autochthonous, or wastewater source material. At a molecular level, variability in NOM quality potentially results in different extents of copper binding. The aims of this study were to measure acute copper EC(50) values in coastal marine and estuarine waters, and identify the relationships between total dissolved copper EC(50) values and measured water chemistry parameters proportional to NOM and reduced sulphur composition. This has implications on the development of marine-specific toxicity prediction models. NOM was characterised using dissolved organic carbon (DOC) concentration and fluorescence measurements, combined with spectral resolution techniques, to quantify humic-, fulvic-, tryptophan-, and tyrosine-like fractions. Reduced sulphur was measured by the chromium-reducible sulphide (CRS) technique. Acute copper toxicity tests were performed on samples expressing extreme DOC, fluorescent terrigenous, autochthonous, and CRS concentrations. The results show significant differences in NOM quality, independent of DOC concentration. CRS is variable among the samples; concentrations ranging from 4 to 40 nM. The toxicity results suggest DOC as a very good predictive measure of copper EC(50) in estuaries (r(2)=0.87) independent of NOM quality. Furthermore, for filtered samples, CRS exists at concentrations that would be saturated with copper at measured EC(50), suggesting that while CRS might bind Cu and decrease bioavailability, it does not control copper speciation at toxicologically relevant concentrations and therefore is not a good predictive measure of copper toxicity in filtered samples.


Asunto(s)
Cobre/química , Agua de Mar/química , Azufre/química , Contaminantes Químicos del Agua/química , Animales , Cobre/análisis , Cobre/toxicidad , Monitoreo del Ambiente , Mytilus/efectos de los fármacos , Azufre/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Environ Toxicol Chem ; 29(2): 311-319, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20821449

RESUMEN

The copper sensitivity of four saltwater invertebrates (the mussel Mytilus galloprovincialis, the oyster Crassostrea virginica, the sand dollar Dendraster excentricus, and the sea urchin Strongylocentrotus purpuratus) was determined experimentally using chronic-estimator embryo-larval test procedures. The effect of sample dissolved organic matter (DOM) content on Cu bioavailability was determined for these species using commonly prescribed test procedures. Comparisons were made among these test results and test results reported previously for two other invertebrate species: the mussel Mytilus edulis and the copepod Eurytemora affinis. All six species exhibited a direct and significant relationship between the sample dissolved organic carbon (DOC; a surrogate measure of DOM) and either the dissolved Cu median lethal concentration (LC50) values or median effect concentration (EC50) values. This relationship is significant even when the DOM has different quality as evidenced by molecular fluorescence spectroscopy. Once normalized for the effects of DOM, the Cu sensitivity of these species from least to most sensitive were E. affinis < D. excitricus < C. virginica approximately S. purpuratus approximately M. edulis approximately M. galloprovincialis. This ranking of species sensitivity differs from the saltwater species sensitivity distribution proposed in 2003 by the U.S. Environmental Protection Agency. These results support the need to account for factors that modify Cu bioavailability in future saltwater Cu criteria development efforts. More specifically, Cu saltwater species sensitivity distribution data will need to be normalized by factors affecting Cu bioavailability to assure that accurate and protective criteria are subsequently developed for saltwater species and their uses.


Asunto(s)
Cobre/toxicidad , Compuestos Orgánicos/análisis , Agua de Mar/análisis , Contaminantes Químicos del Agua/toxicidad , Animales , Disponibilidad Biológica , Bivalvos , Cobre/farmacocinética , Ostreidae , Erizos de Mar , Especificidad de la Especie , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...