Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 186: 114333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729693

RESUMEN

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Asunto(s)
Acrilamida , Asparaginasa , Asparagina , Coffea , Café , Gusto , Acrilamida/análisis , Asparagina/análisis , Coffea/química , Café/química , Humanos , Compuestos Orgánicos Volátiles/análisis , Culinaria/métodos , Alcaloides/análisis , Ácido Clorogénico/análisis , Cafeína/análisis , Masculino , Manipulación de Alimentos/métodos , Reacción de Maillard , Calor , Cromatografía Líquida de Alta Presión , Semillas/química , Femenino
2.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338619

RESUMEN

Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, ß-damascenone, α-ionone, ß-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.

3.
Food Res Int ; 174(Pt 2): 113667, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981379

RESUMEN

Coffee cold brews have been gaining prominence and popularity among consumers worldwide. However, only a few studies have systematically analyzed their chemical composition or evaluated microbiological safety aspects. This study aimed to evaluate the survival of Bacillus cereus and Escherichia coli in cold brews prepared from roasted and ground Coffea arabica and C. canephora seeds using the following preparation methods: immersion without filter (INF), immersion in a cotton filter bag (ICF), vacuum (Vac.) and cold dripping (Drip.). Traditional hot dripping methods using filter paper (HDFP) and cotton filter (HDCF) were also tested for comparison. Water at 4 °C or 25 °C was intentionally contaminated (105 CFU/mL) with cells of Escherichia coli ATCC 25922 (EC) and Bacillus cereus F4433 (BC) before coffee extraction and refrigeration at 4 °C. Coffee concentrations of 5, 10, and 15% were tested. Analyses of pH, soluble solids, nine chlorogenic acids and two lactones (CGA), caffeine, trigonelline, and melanoidins were performed. Results were compared by ANOVA, followed by the Fisher's test, Pearson correlation, Variable Importance in Projection (VIP), and Cluster analyses, with a significance level of 5%. EC and BC were not detected (<10 CFU/mL and < 1 CFU/mL, respectively) after preparing C. arabica and C. canephora hot brews. In cold brews, the higher the extraction of soluble solids and bioactive compounds (with the highest occurring at 25 °C), the lower the counts of inoculated microorganisms during 24 h of storage. BC was not detected after 24 h of extraction and/or storage in the drinks obtained by ICF and Drip. at 5%, 10%, and 15% and INF and Vac. at 15%. EC was not detected in ICF and Drip. at 10 and 15%, and in INF at 15%. C. canephora brews exhibited higher levels of soluble solids, CGA, caffeine, and melanoidins than C. arabica brews. Based on these results, it can be concluded that in the absence of thermal processing as in hot brews, more concentrated cold brews, such as 15%, produced at 25 °C by dripping and immersion methods, are preferable for later dilution due to the higher content of soluble solids and bioactive compounds that contribute reducing the number of microorganisms in the beverage.


Asunto(s)
Coffea , Coffea/química , Café/química , Cafeína/análisis , Agua , Escherichia coli
4.
Food Res Int ; 173(Pt 2): 113361, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803702

RESUMEN

Coffee leaves contain several bioactive compounds and have been traditionally consumed as a medicinal infusion in the East for centuries. Coffee production generates large amounts of leaves as by-products, which are often wasted in most producing countries because of the low acceptability in the West. Nevertheless, processing and blending coffee leaves may increase aroma and flavor complexity. This study evaluated the volatile and sensory profiles and consumer acceptance of coffee leaf teas compared to two among the most consumed teas (black and maté teas) in Rio de Janeiro. Infusions were made with one experimental and one commercial coffee leaf tea (CLT), two black teas (BT), and one toasted maté tea (TMT) for volatile (GC-MS/MS) and sensory profiles. As an attempt to improve coffee leaf tea acceptance, CLT were also blended (50%) with BT or TMT. Acceptance, Check All That Apply (CATA), and Projective Mapping sensory tests were performed with untrained assessors aged 18-49 (n = 100). Volatile data were standardized by centering and normalization. Sensory data were treated by ANOVA/Fisher test, PCA, and AHCMFA, considering differences at p < 0.05. Ninety-two volatile compounds distributed in 12 classes were identified in different samples. CLT, BT, and TMT infusions shared 19 compounds, including 9 potential impact compounds for aroma and flavor: α-ionone, ß-ionone, hexanal, nonanal, decanal, benzaldehyde, trans-linalool oxide, linalool, and dihydroactinidiolide. The most cited flavor attributes for CLT infusions were herbs/green leaf, woody and refreshing. For TMT and BT, herbs/green leaf, woody, burnt, and fermented were the most cited. These attributes agreed with the volatile profiles. CLT shared 22 compounds with TMT and 28 with BT. Considering pure infusions, TMT presented the highest mean acceptance scores (6.7), followed by Com. and Exp. CLT (6.1 and 5.8, on a 9-point-hedonic scale, respectively). Blending with TMT increased mean acceptance of Exp. CLT (6.4), while blending with BT, downgraded the mean acceptance of Com. CLT (5.3). In Projective Mapping, CLT was considered to have a higher sensory resemblance with TMT than BT. If produced adequately, CLT was shown to have good market potential to support sustainable coffee production and promote health.


Asunto(s)
Coffea , Espectrometría de Masas en Tándem , Promoción de la Salud , Brasil ,
5.
Foods ; 12(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174444

RESUMEN

Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.

6.
Foods ; 11(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36230220

RESUMEN

Coffee is one of the most produced and consumed food products worldwide. Its production generates a large amount of byproducts with bioactive potential, like the fruit skin and pulp, popularly called cascara. This study aimed to evaluate the volatile and sensory profiles and the consumption potential of commercial Coffea arabica cascara teas by Rio de Janeiro consumers. Analyses of volatile organic compounds in unfermented (n = 2) and fermented (n = 4) cascara tea infusions were performed by GC-MS. RATA and acceptance sensory tests were performed with untrained assessors (n = 100). Fifty-three volatile organic compounds distributed in 9 classes were identified in different samples. Aldehydes, acids, alcohols, esters, and ketones prevailed in order of abundance. With mild intensity, the most cited aroma and flavor attributes were sweet, herbal, woody, prune, fruity, honey, toasted maté and black tea for unfermented teas. For the fermented teas, sweet, woody, black tea, prune, herbal, citric, fruity, honey, raisin, peach, toasted maté, tamarind, and hibiscus were rated as intense. A good association between the attributes selected by the assessors and the volatile compounds was observed. Unfermented teas, with a mild flavor and traditional characteristics, showed better mean acceptance (6.0−5.9 points) when compared to fermented teas (6.0−5.3 points), with exotic and complex attributes. These were well accepted (>8.0 points) by only about 20% of the assessors, a niche of consumers that appreciate gourmet foods.

7.
Food Funct ; 11(9): 7561-7575, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32820768

RESUMEN

The United States is the largest coffee consuming country worldwide. Recently, in addition to cup quality, the focus on health promotion has increased significantly in the country, with launching of many brands with health claims, mainly highlighting the antioxidative and stimulating properties of the beverage. On the other hand, mycotoxins and, to a lesser extent, acrylamide, have raised concerns among consumers and health authorities. This study investigated the contents of the main bioactive compounds (caffeine, chlorogenic acids and their 1,5-γ-quinolactones, and trigonelline) in health performance coffees and compared them to those of conventional roasted coffees available on the U.S. market. The following categories were compared by ANOVA at p ≤ 0.05, followed by Fisher's test: 1 - health performance, 2 - gourmet and 3 - traditional, totaling 127 samples. As complementary results, the contents of acrylamide and ochratoxin A were evaluated in part of the samples (n = 58). The mean contents (g per 100 g) of bioactive compounds for categories 1 to 3, respectively, were 1.09, 1.11 and 1.07 for caffeine; 1.75, 1.88 and 1.34 for chlorogenic acids/lactones, and 0.63, 0.64 and 0.56 for trigonelline. The mean contents (µg kg-1) of acrylamide for categories 1 to 3, respectively, were 82, 71 and 85. Only about 7% of the evaluated samples presented quantifiable amounts of OTA and all of them were within the maximum limits established by health authorities. In general, the contents of bioactive and potentially harmful compounds were not consistently different among categories, with high and low individual amounts in all of them. Most health claims on labels related to the amount of bioactive compounds in health performance coffees were unjustified, suggesting the need for improvement in coffee labeling regulation in the U.S.


Asunto(s)
Coffea/química , Café/química , Preparaciones de Plantas/análisis , Alcaloides/análisis , Antioxidantes/análisis , Cafeína/análisis , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión , Café/economía , Humanos , Estados Unidos
8.
Food Funct ; 11(2): 1410-1424, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31970371

RESUMEN

The aim of this study was to investigate the effects of coffee species, roast degree and decaffeination on in vitro probiotic bacterial growth, and to identify the major coffee compounds responsible for such effects. Six C. arabica and C. canephora extracts (regular medium and dark roasted and decaffeinated medium roasted), and five bioactive compounds (chlorogenic acid, galactomannan, type 2 arabinogalactan, caffeine and trigonelline) were individually incorporated into a modified low-carbon broth medium-(mMRS), at different concentrations (0.5 to 1.5% soluble coffee and 0.05 to 0.8 mg mL-1 standard solutions). Inulin and fructooligosaccharides (FOS) were used as prebiotic references. MRS and mMRS were used as rich and poor medium controls, respectively. The growth of Lactobacillus rhamnosus GG ATCC 53103-(GG), L. acidophilus LA-5-(LA), Bifidobacterium animalis DN-173010-(BA) and B. animalis subsp. lactis BB12-(BB12), as well as the growth inhibition of non-probiotic Escherichia coli ATCC 25922 were evaluated. Differences in growth between mMRS and treatments (Δlog CFU mL-1) were compared by ANOVA and Tukey's test, and considered when p ≤ 0.05. Overall, after 48 h incubation, the medium roasted arabica coffee extract increased the growth of GG, LA and BA (range: Δlog CFU mL-1 = 0.5 to 1.8), while the dark roasted arabica coffee extract increased BB12 growth (range: Δlog CFU mL-1 = 0.9 to 1.7), in a dose dependent manner. Improved performances of GG, LA and BA were promoted by higher polysaccharides and CGA concentrations, with better performance for Lactobacillus sp. The tested coffee bioactive compounds promoted the poor growth of BB12. Plain caffeine did not promote Bifidobacterium sp. growth and limited the growth of Lactobacillus sp. Regular C. arabica and C. canephora extracts inhibited the growth of E. coli, while the decaffeinated extracts promoted its growth. The present results show that coffee consumption can selectively improve the growth of probiotic strains, thus exerting a prebiotic effect, and show that coffee roasting and decaffeination affect this property and that different strains utilize different coffee components to grow.


Asunto(s)
Cafeína/farmacología , Coffea , Café/química , Escherichia coli/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Extractos Vegetales/farmacología , Probióticos , Manipulación de Alimentos , Humanos
9.
Arch Oral Biol ; 107: 104512, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31382160

RESUMEN

OBJECTIVE: To evaluatein vitro the antibacterial activity, the antibiofilm effect and the cytotoxic potential of mouthwashes containing Brazilian red propolis with or without fluoride. METHODS: The minimum inhibitory and bactericidal concentrations (MIC and MBC) against S. mutans, S. sanguinis, S. salivarius and L. casei were determined for RPE mouthwashes. A cariogenic biofilm with the aforementioned bacteria was formed over cellulose membrane disks (N = 30, 13 mm), which were submitted for 1 min to the following mouthwashes: plain mouthwash base; 0.05% NaF; 0.8% RPE; 0.8% RPE + 0.05% NaF and 0.12% chlorhexidine (CHX). The bacterial viability and the production of extracellular polysaccharide (EPS) were measured. Cytotoxic potential of the mouthwashes was also evaluated. For bacterial viability and EPS production, Mann-Withney and one-way ANOVA tests were performed followed by Tukey, with results considered significant when p ≤ 0.05. RESULTS: MIC and MBC values of RPE mouthwashes ranged from 7.44 to 29.76 mg/mL and from 7.44 to ≥59.52 mg/mL, respectively, presenting better action against S. salivarius. RPE mouthwashes showed 44% of viable cells after 1 min of contact with fibroblasts. RPE (7.74) had the greatest reduction of viable total microorganisms and did not differ from the RPE + NaF (7.95) (p = 0.292). CHX (7.54) was the most effective in reducing Streptococcus spp, but did not differ from RPE (p = 0.521) and RPE + NaF (p = 0.238). There was no difference between the treatments regarding EPS production. CONCLUSION: RPE and RPE + NaF mouthwash showed similar antibacterial activity, toxicity level and antibiofilm effect compared to CHX.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Antisépticos Bucales/farmacología , Própolis/farmacología , Brasil , Clorhexidina , Fluoruros , Streptococcus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA