Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366052

RESUMEN

Gene ontology analyses of high-confidence autism spectrum disorder (ASD) risk genes highlight chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated tubulin biology and cellular proliferation. As many chromatin regulators, including the ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ and KMT5B) specifically with respect to tubulin biology. We observe that all five localize to microtubules of the mitotic spindle in vitro in human cells and in vivo in Xenopus. Investigation of CHD2 provides evidence that mutations present in individuals with ASD cause a range of microtubule-related phenotypes, including disrupted localization of the protein at mitotic spindles, cell cycle stalling, DNA damage and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among tubulin-associated proteins, suggesting broader relevance. Together, these results provide additional evidence that the role of tubulin biology and cellular proliferation in ASD warrants further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/metabolismo , Cromatina/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Tubulina (Proteína)/metabolismo , Histonas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
2.
Cell Syst ; 12(11): 1094-1107.e6, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34411509

RESUMEN

Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital heart disease, but the extent to which these conditions share molecular mechanisms remains unknown. Here, we use network genetics to identify a convergent molecular network underlying autism and congenital heart disease. This network is impacted by damaging genetic variants from both disorders in multiple independent cohorts of patients, pinpointing 101 genes with shared genetic risk. Network analysis also implicates risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropicalis, confirming both heart and brain developmental abnormalities. The network includes a family of ion channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain development. This study provides a road map for identifying risk genes and pathways involved in co-morbid conditions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cardiopatías Congénitas , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Cardiopatías Congénitas/genética , Humanos
4.
Neuron ; 109(5): 788-804.e8, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497602

RESUMEN

Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Corteza Cerebral/crecimiento & desarrollo , Estrógenos/fisiología , Neurogénesis , Animales , Trastorno del Espectro Autista/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Evaluación Preclínica de Medicamentos , Estrógenos/administración & dosificación , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Factores de Riesgo , Transducción de Señal , Xenopus
6.
Development ; 147(21)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467234

RESUMEN

DYRK1A [dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A] is a high-confidence autism risk gene that encodes a conserved kinase. In addition to autism, individuals with putative loss-of-function variants in DYRK1A exhibit microcephaly, intellectual disability, developmental delay and/or congenital anomalies of the kidney and urinary tract. DYRK1A is also located within the critical region for Down syndrome; therefore, understanding the role of DYRK1A in brain development is crucial for understanding the pathobiology of multiple developmental disorders. To characterize the function of this gene, we used the diploid frog Xenopus tropicalis We discover that Dyrk1a is expressed in ciliated tissues, localizes to ciliary axonemes and basal bodies, and is required for ciliogenesis. We also demonstrate that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression and cell death during brain development. These findings provide hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.


Asunto(s)
Encéfalo/anatomía & histología , Cilios/metabolismo , Embrión no Mamífero/anatomía & histología , Trastornos del Neurodesarrollo/genética , Organogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Animales , Encéfalo/embriología , Ciclo Celular/genética , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Tamaño de los Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Riesgo , Huso Acromático/metabolismo , Telencéfalo/anatomía & histología , Proteínas de Xenopus/metabolismo
7.
Science ; 362(6420)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545852

RESUMEN

Whole-genome sequencing (WGS) has facilitated the first genome-wide evaluations of the contribution of de novo noncoding mutations to complex disorders. Using WGS, we identified 255,106 de novo mutations among sample genomes from members of 1902 quartet families in which one child, but not a sibling or their parents, was affected by autism spectrum disorder (ASD). In contrast to coding mutations, no noncoding functional annotation category, analyzed in isolation, was significantly associated with ASD. Casting noncoding variation in the context of a de novo risk score across multiple annotation categories, however, did demonstrate association with mutations localized to promoter regions. We found that the strongest driver of this promoter signal emanates from evolutionarily conserved transcription factor binding sites distal to the transcription start site. These data suggest that de novo mutations in promoter regions, characterized by evolutionary and functional signatures, contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Mutación , Regiones Promotoras Genéticas/genética , Sitios de Unión/genética , Secuencia Conservada , Análisis Mutacional de ADN , Sitios Genéticos , Variación Genética , Humanos , Linaje , Riesgo , Factores de Transcripción/metabolismo
8.
Nat Genet ; 50(5): 727-736, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700473

RESUMEN

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Mutación INDEL/genética , Polimorfismo de Nucleótido Simple/genética , Isoformas de Proteínas/genética , Femenino , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino
9.
Nature ; 515(7526): 216-21, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25363768

RESUMEN

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Niño , Análisis por Conglomerados , Exoma/genética , Femenino , Genes , Humanos , Pruebas de Inteligencia , Masculino , Reproducibilidad de los Resultados
10.
Cell Rep ; 9(1): 16-23, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284784

RESUMEN

Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR = 1.6; 95% CI = 1.0-2.7; p = 0.03), are more common in female probands (p = 0.02), are enriched among genes encoding FMRP targets (p = 6 × 10(-9)), and arise predominantly on the paternal chromosome (p < 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Mutación del Sistema de Lectura , Eliminación de Secuencia , Niño , Trastornos Generalizados del Desarrollo Infantil/sangre , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , ADN/sangre , ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas de Unión al GTP/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Linaje , Fenotipo , Factores Sexuales
11.
PLoS Genet ; 5(12): e1000783, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041210

RESUMEN

Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but not its overall output.


Asunto(s)
Candida albicans/citología , Candida albicans/genética , Redes Reguladoras de Genes/genética , Candida albicans/crecimiento & desarrollo , Recuento de Colonia Microbiana , Bases de Datos Genéticas , Técnicas de Inactivación de Genes , Biblioteca de Genes , Homeostasis/genética , Modelos Biológicos , Fenotipo , Saccharomyces cerevisiae/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA